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‘ Motivation I

The Higgs sector of the minimal supersymmetric extension
of the Standard Model (MSSM) is a constrained 2HDM.
However, whereas the tree-level model is constrained by
SUSY, at one-loop all possible 2HDM interactions allowed
by gauge invariance are generated (due to SUSY-breaking

interactions).

Thus, the Higgs sector of the MSSM is in reality the most
general 2HDM model (albeit with certain relations among
the Higgs sector parameters determined by the fundamental

parameters of the broken supersymmetric model).

The general 2HDM consists of two identical (hypercharge-
one) scalar doublets ®; and ®5. One can always redefine

the basis, so the parameter tan 3 = vy /v1 is not meaningful!

To determine the physical quantities, one must develop

basis-independent techniques.



‘ The General Two-Higgs-Doublet Model I

Consider the 2HDM potential in a generic basis:
V=m? & ® +m5,d & — [m,® @ +h.c.] 4+ 1A (2]D)°
+ 32a(D1P2)” + Ag(D]P1) (D1Ds) + A\a(D]Py) ($1P1)

+ {%)\5(@;@2)2 + [AG((I)J{q)l) + )\7(c1>£c1>2)] Ol D, + h°C°}

The vacuum expectation values (vev's) are (®Y) = wv;/+/2, with
tan 8 = vy/v1 and v? = v? + v5 = (246 GeV)>. The parameters
m3i,, M5y Mly Al,..., A7 and v;, vy would change under a

U(2) transformation ®, — U;®, (and & = CID;)UJC_L). To identify

invariants, write :
V = Y0L®h + 1 Z,5.4(PL0) (PLDa)
where Z ;.0 = Z_ 3,5 and hermiticity implies
Yop = (Yoa)™ Zaped = (Zbade)” -
The barred indicies help keep track of which indices transform with U

and which transform with UT. For example, Y,; — UGEYCJU;B and
- T T o
Zobed — UaéUfBUCgUhJZefgh.



The scalar potential minimum condition is given by:
~ 2 ~ k.~
v [Yag + %v Z J’Ué*’l)d] =0.

CLEC

The most general U(1)gpm-conserving vev is:

(B,) = — | ith o,=( ™
a) = —= , wi Vo = , :
V2 \ 7, sz e’

In addition, if we define: @, = —e""") ¢,, T (with €10 = —e21 = 1,
€11 = €3 = 0), then W, — U_w, under a U(2)-transformation.

Without loss of generality, we can always set n = 0 with a U(1)y

rotation, and restrict the U(2) basis transformations to be of the form

cos 0 e % sin 0
U = . . :
—e'X sin 0 e'X=8) cos0

Here is one possible invariant: Z1 = Z ;.52 Uy V. V4. Explicitly,
4 4 2 2 : 2 '
Z1 = Micg+Aasgt5As45555+2528 [cﬁRe(AGG@ﬁ) + SﬁRe()\m%E)] 7

where A\gs = A3+ A\q + Re(A5ei£), cg = cos (8, sg = sin (3, etc.

We now define the Higgs basis as the basis in which (®?) = v/+/2 and
(®Y) = 0. In this basis, ¥ = (1,0) and @ = (0,1),* and so Z; is

the coefficient of %(CIDLCID@)Q in the scalar potential.

*One is free to rotate ®, — e‘X®;, in which case @ = (0, *X).



The complete list:

Ak AN

Y1 =Y, ;v; vy,
a

_ Ak A
Yo =Y, w; wy,

_ AK A
Y3 =Y ;v wy,

and

_ ANk AN KN
Z1 =2 4peq Vg Up Uz Vg

_ A~k A~ ANk N
Zo =Z p.g W- Wy W~ Wyq ,

Al

_ Nk AN Nk A
23 =2 peq Vg Up W; Wy

_ AK AN AN A
2y =2 peqg Wy Vb Vg Wy

_ A~k
Zs =2 peqg V. Wp U

s

AN

- A~k AN K
Ze6 =2 gped Vg Vb Uz Wy

_ _ _/\* ~ ANk A
L7 =L peq Vg Wp Wz Wy

When the above invariants are evaluated in the generic basis, one finds:



2 2 2 1
Yl = m%lc% + WL228Q — Re(m12ez£)8218 ,
Y2 = m%ls% + m%QC% + Re(m%2615)325 5
2 1 . 2 1
Y3 = %(m%Q — m%1)826 — Re(m12ez£)c26 — zIm(leezg) ,
and
: 5 .
Z1 =XM1k + Aosy + Shaass3g + 2505 [chReOe™) + s3Re(Age’)]
: 5 .
Z9 :)\13% + AQC% + %A345835 — 2893 [S%Re(/\(;ezs) + cﬁRe(/\7ez£)] ,
5 .
Z3 :%325 [A1 + A2 — 2A345] + A3 — sogcogRe[(Ag — A7),
Zy =1s25 A + Ag — 2) A Re[(Ag — A7)e’s
4 =7528 A1 + A2 — 2A345] + Ag — sggeogRel(Ag — A7)e ],
21 . 21
Z5 =%s55 M + A2 — 2A345] + Re(A5e”™) +icogIm(A5e?™®) |
T R
— 82662181:{6[()\6 — A7)e ] — 'LSQIBIm[()\G —A7)e )],
2 2 ) 21 )
Z6 = — %825 [chﬁ — )\286 — )\345625 — ’LIm(A5€ 25)] + CBCSBRG(A6GZ£) ,
+ sgszaRe(Are’®) + icGIm(Age™®) + isZIm(Aze’®)
%)

2 2 : 2i '
Zp = — %826 [)\135 - AQCB + A345¢98 + iIm(Age 7’5)] -+ 868361:{8()\66%

+ CBC3IBRe(>\7ei£) + is%Im(AGeiS) + ic%Im()WeiS) .



The Higgs basis is obtained from the generic basis via:

P, = DPicg+ e—z’& Dysg, Dy = —Py1sg + e_ig Docg ,
where
Gt HT
¢CL — . 9 ®b — . Y
7 (v + ¢ +1iG) 7 (@6 +1i4)

and GF and G are the Goldstone fields. In the Higgs basis,
V=Y18!®, + V2@ @), + [Y3®! &), + h.c] + 172, (2] ®,)?
+ 522(2)P1)” + Za(B,2a) (D)D) + Za(D[ D) (D)D)
4 {%Z5(<I>L<I>b)2 4 [26 (@ ®,) + Z7(<I>£<I>b)] oo, + h.c.} .
The corresponding scalar potential minimum conditions are:
Vi = —3Z10?, Yy = —1 2607,

and the charged Higgs squared-mass is given by: m?{i =Y+ %ng2.
The decoupling limit is achieved in the limit of Y5 > v?, subject to the
conditions | Z;| < O(1).



‘ The CP-conserving 2HDM I

The Higgs spectrum in the CP-conserving model contains a CP-odd
state, A, a charged scalar pair, H?, and two CP-even states obtained

by diagonalizing a 2 X 2 squared-mass matrix:

H = (V/2Re ®) — v1) cos a + (V2Re ®) — vs) sin o,
h = —(vV2Re ®] — v)) sin a + (V2Re ®) — v3) cos c .

The angle « (like ) is basis-dependent. Define m = (cq, So) in the

generic basis. Then the basis independent quantities:
NaV, = cos(f — a) = cg_q, €abTaUp = sin(B — @) = sg_q -

are meaningful. The end result of the diagonalization is:

my, =3 [mi +v*(Z5 + Z1) + \/[mi +(Zs — Z1)v2]2 4+ 4Z2v4| |

. —226’02
sin [2(8 — a)] = 285-aCs—a = — 5
My — My,
Z1 — Z:)v? — m?
CcoSs [2(6 - O‘)] — C%—a - S%—a — & 2 ) 2 =
Mg — My,

In addition, m? . = m% + 1v*(Z5 — Zy).



The decoupling limit of the CP-conserving 2HDM

In the CP-conserving model, the decoupling limit corresponds to the
limit where m 4 > v, assuming A\; < O(1). From the expressions for
B — « just given, this limit corresponds to taking 3 — o« — 7 /2; i.e.,

cos(B — a) — 0. In the approach to the decoupling limit, one finds:

—Z
’ ¥ Zy— Zs + 3Z6C3—a|

2
my = v
Cl—a

m, o~ v2(Z1 + ZsCp—a)
2 2
my ~ my + v (Zs — Zecs—a) ,

where myg > my, implies mi > v2(Z1 — Zs 4+ 2Zscs—_q). Thus,

—Z6’U2 —Z6’U2
Y
2

cos(B — a) ~ ~
(B ) m? — (Z1 — Z5)v?  m3 —mj

Implications

® my ™~ mag>~mpg+, [upto corrections of O(v2/mA)] :

e cos(B—a) SO <%> :

A



‘ 2HDM Tree-Level Higgs Couplings I

Higgs couplings to gauge bosons: suppression factors

cos(B — ) sin(8 — «a) no angle factor
HWYTW™ AW TW ™

HZZ hZZ

Z Ah ZAH ZHTH ,vHTH~
W*HTh W*HTH W*HTA
ZW*HTh ZW*HTH ZW*HTA
YW*HTh YW*HTH YWEHTA

Higgs self-couplings

Here are two examples:
3 2 2 3
gnhn, =—30 [leﬁ_a + 234585_acﬁ_a + 3Z605—a85_a + Z7cﬁ_a]
4 4 2 2
G = — 3| Z18h_o + Zach_o + 2731565055

+ 42606—043%_@ + 4Z7C%_a85_a]

Indeed, all couplings above depend only on basis-independent invariants.



Higgs couplings to fermion pairs

—0 —~ —0
_'C’Y :QL(bln?’OUIO% + QL(I)lnlD,OD%

+Q, By Uy + Q,®ams "Dy + hec.,

~

where &; = i02®], Q% iIs the weak isospin quark doublet, and
U, D% are weak isospin quark singlets in an interaction eigenstate
- U0 U0 D0 D0 L :
basis, and 1y, 5", m; ", My~ are matrices in flavor space. ldentify
the fermion mass eigenstates by employing the appropriate bi-unitary
transformation of the quark mass matrices involving unitary matrices
VY, VP, VY, VP, where K = VVVPTis the CKM matrix. Then,
?,ng), where n® = VLQniQ’OVRQT, for Q = U, D.

7

define n? = (n

One can then introduce the invariant quantities:

/ﬂ:QE@\-nQZCBn?—I—SBUQQ,

pl =@ -0 = —sgny + cany’ .

The quark mass terms are identified by replacing the scalar fields with
their vev's. VU, VD, V]g and Vé) are then chosen so that x” and kY
are diagonal with real non-negative entries. The resulting quark mass

matrices are then diagonal:

UV D v U
Mp = —k, My = —k .



The Higgs-fermion Yukawa couplings are then given by:

1 v
— Ly = E

v

— i
D [MDSBQ + —(p"Pg + p” PL)cﬁ_a] Dh

1 — v T
+ =D [MDcﬁa — —(p"Pr+ p” PL)sﬁa} DH
v V2

(

— i
ﬁD(pDPR — p” ' P)DA

+

1 — (% U Ut
+—-U |Mysg—oa+—=(p Pr+p Pr)cg—o| Uh
v V2 _

1 — v . u Ut
+—-U |Mycg—a — —=(p Pr+p Pr)ssp_o| UH
v | \/5 _

1

V2

— T
U(pUPR — pU PL)UA

+{T [Ko"Pr - pUTKPL] DH" +he.} .

where Pg 1, = £(1 £ 75). The Higgs-fermion Yukawa couplings depend
only on invariant quantities: the quark masses, the pQ and 8 — a.
In general, pY and p” are complex non-diagonal matrices. Hence,
the Yukawa couplings exhibit tree-level Higgs-mediated flavor-changing
neutral currents and CP-violating Higgs-fermion couplings. But, near

the decoupling limit, the couplings of h approach their SM values.



In a one generation model, the Higgs-quark interaction produces the

following Feynman rules of the form —19 41 o'

m |
Ghgg =—8p—-a + 75(Sq + iv5Py)cp-a
[

9Hqq :chﬁ_a — 55(Sq + 175Py) sp-a
gaua = — J(1Suvs — Pu)
9add :%(isd% — Py) ,
Irrtan =51p7 (1 +75) — p (1 — 5)],
where S, = Re p® and P, = Im p©.

The MSSM Higgs sector is a type-ll 2HDM, i.e., nY = n2 = 0. A
basis-independent condition for type-Il is: n" - n” = 0. But, this
means that tan 3 has been promoted to a physical parameter since

nY = n¥ = 0 occurs only for one choice of 3.7 It follows that:

tan 8 = ~ 5 = i

These two definitions are consistent if kY k? + pY p? = 0 is satisfied.

f Actually two choices: 3 and 3 — 7 /2, corresponding to whether the Higgs doublet that couples
to, say, the up-type quark is ¢ or ®9.



D

But this is equivalent to the type-Il condition, nV - n© = 0. Moreover,

using k¢ = V2Mg /v = V2v 'diag(m,, ma) ,

D —+v/2my tan 6] U V2m,, cot I6;
— ’ P = .
v V

P

This then yields the well-known type-ll Higgs-quark interactions:

_ sin o
hbb : — = 1sin(f8 — a) — tan B cos(B — «),
cos 3
_ cos o
hitt : . = 1sin(8 — a) + cot Bcos(B — a),
sin
_ cos o
Hbb : = cos(ff — a) + tan 8 sin(B — «) ,
cos 3
_ sin o
Htt : . = cos(f8 — a)— cot B sin(B — «) .
sin (3

In the more general (type-lll) 2HDM, tan 3 is not a meaningful

parameter. Nevertheless, one can introduce three tan 3-like parameters:]t

_pP U _pE
taanEK—D’ tanBuEp—U, tanﬁezﬁ,

the last one corresponding to the Higgs-lepton interaction. In a type-lll

2HDM, there is no reason for the three parameters above to coincide.

1 Interpretation: In the Higgs basis, up and down-type quarks interact with both Higgs doublets.
But, clearly there exists some basis (i.e., a rotation by angle (37, from the Higgs basis) for which only

one of the two up-type quark Yukawa couplings is non-vanishing. This defines the physical angle 51.



Conditions for explicit CP-violation

Here, we consider the conditions for Higgs-mediated CP-

violation due to an explicitly CP-violating Higgs potential.?

Theorem: The Higgs potential is CP-conserving if and only

if there exists a basis in which all Higgs potential parameters

are real.

Potentially complex Higgs potential parameters are: m?2,,

As, A¢ and A7.  Of course, these are basis-dependent.

Nevertheless, the following result should be noted:

Theorem: In a generic basis, the following is a sufficient (but
not a necessary) condition for an explicitly CP-conserving
2HDM scalar potential:

Im ([m75]*A5) = Im (mipAg) = Im (mi,)\7)

=Im (AA2) =Im (AEA2) =Im (A3A7) = 0.

SWe defer the question of whether CP is spontaneously broken if the Higgs potential

is manifestly CP-conserving.



Clearly, the latter is not good enough. We shall instead
provide a set of basis-independent conditions. The complete

set of conditions is summarized by the following result:

Theorem: The following is a necessary and sufficient

condition for an explicitly CP-conserving 2HDM scalar

potential:
Iyvzzz =Ivyzz = lez = Isysz =0,
where

Ivzzz = Im Z(l)Z(l)Zbechda) a
Ivyzz = Im deade(l))

lez = Im abch(1>Z(l)Zfaijkjngnth) y

(
(Ys
(
I3y3z = Im( qthngaZehqucengacbd)

Above, we have introduced:

1
253 = 0veZased = Zatva-



Explicit results

Toz = 225" Tm[(A;26)°] — Tm[AS " (X6 — A7) (Ag + A7)’
+2im(NAe) [Pl + [A7* = (= 22)%] = 2(12l” = 1277
+(A1 = Ag)Im [ [A" = 2X5 (X + A (A7 = A6)(ASAs — AgA7)|
— (A1 = A)Im(AA%) = 2(]Xel” = [A7)ImASA(As + A7)

+(A1 = X2) [ A5 Im[AL (X6 + A7)7],

Iyzzz = 2(1X6|” — [Xe|))Im[Yi2(A§ + A7)]
+(Yin = Ya2) [Tm[A; (A + A)*] = (A1 = A2)Tm(AAe)|

—|—(>\1 — )\2) [Im(YlgA*) — Im[Y:[Q)\;(AG —|— )\7)]] y

Iyyzz = (A1 — X)Im(Y D) — 2| Yia | Tm(AEe)
—Im[(Yi22§)"] + Im[(Y1225)%] + (Y11 — Ya2) Im (A3 X6)
— (Y11 — Yo2) [Im(Y12A") + Im(Yi2 s (A6 + A7))]
where

A = ()\2 — )\3 — >\4))\6 -+ ()\1 — )\3 — )\4))\7 .

The expression for I3y 3z is very long and will not be given here.



Remarks

e All invariants of cubic order or less are manifestly real.

e The imaginary part of any potentially complex quartic or

quintic invariant is a real linear combintation of Iy 77z

and Iyyzz.

e The imaginary part of any potentially complex sixth order
invariant constructed solely out of the Higgs self-couplings

is proportional to Isz.

e The imaginary part of any potentially complex sixth order
invariant that is both cubic in Y and Z respectively is a

real linear combination of Iv 777, Iyvvyzz and Isysz.

e The imaginary part of any other potentially complex sixth

order invariant is a real linear combintations of Iy 77~

and Iyyzz.

e The imaginary part of any potentially complex invariant

of order seven or above is a real linear combinations of

Ivzzz, Ivvzz, lez and I3ys3z.



To see that all four invariants introduced above are required,
we first note that there always exists a basis in which
A7 = —Xg. [Proof: noting that

Z(l):<>\1‘|‘)\4 )\6‘|‘)\7)
AL+ NS Ao+ Mg

is an hermitian matrix, we can always diagonalize it.] In the
A7 = — g basis (this basis is not unique),
IGZ — —<>\1 — )\g)glm()\gA%) y
Iyzzz = —(A1 — X2)"Im(Y12)f)
Iyvyzz = <>\1 — )\2) [Im(YfQ)\;) + (Yll — Y22)Im<Y12)\g):| .

First, suppose that Ay # Ao. Then consider three cases:
1.Y=0 = Ivzzz = Iyyzz = I3ysz = 0]
2. M =0and Yy = Yoy [= Iz = Iy zz7z = I3y3z = 0]

3. )\5 = 0 and Yi1 = Yoo [j IGZ =Iyvyyzy = O]

In case 3, I3ysz = 0 if in addition Re(Y12A§) = 0. Then, in

each case there is only one potentially complex invariant.



In a basis where \g = —\~,
I3ysz = 2Im(Y132>‘6(>‘§)2) - 4Im(Y132(>\Z)3)
+[(Y11 — Ya2)” — 6]Yaa|*] (Y11 — Ya2)Im(AGA;)
— (A1 + X2 — 223 — 224) (Y11 — Yoo)Im(Y5(A5)7)
+ (A1 + Ao — 223 — 22)Im (YL EN8)
— (A1 + A2 — 223 — 2)\y) [(Yn — Ya)® — |Y12|2] Im(Yi2A6A5)
+2(226l” = [Xsl?) [(Yir = ¥22)” = [Yial*| Im(Y1227)
+ [(M — X3 — A) (A2 — A3 — ) +2[X6]” — |>\5|2]
X (Y11 — Ya2)Im(Y5A]) .

If \¢ = 0 and Y71 = Yoo, then I3y37 = 0. In this case, only

Iyvvy 7z is potentially complex.

If A\s = 0 and Y71 = Y59, then
]3y32 = —16 [Re(YlgAZ)P Im(Ylg)\g) .

Thus, if in addition Re(Y12A§) = 0, then only Iy zzz is

potentially complex.



If A\ = Xoand \g = — A7 then Isz = Iy zz7 = Iyyzz = 0.
Nevertheless, CP can still be violated if I3y3z # 0.

The case of Ay = Ay and A\¢g = — A7 is noteworthy, since if
these relations are true in one basis then they are true in
all bases. Moreover, since Igz = 0 in this case, one can
conclude that if A\; = Ay and A\g = —A~7 then there must
exist a basis in which A5, A\g and A7 are all real. In this basis

only Y12 = —m?, is potentially complex and we find:

I3ng =2 [)\% + )\5(>\1 — )\3 — )\4) — 2)\%} Im Y12
X [4)\6 (Re Y12)2 — (Yll — YQQ)()\S + )\4 —+ )\5 — )\1) Re Y12
— (Y11 — Ya2)?Xe] -

Note that, e.g., if AZ + A\5(A1 — A3 — Ay) — 202 =0, then it
is possible to have Im m%, = 0 (and all the \; zero) and yet
the Higgs potential is CP-conserving! This would then imply
that it should be possible to transform to another basis in
which all the Higgs potential parameters are simultaneously
real. Numerical experiments suggest that this is always

possible.



‘ Conditions for a CP-conserving Higgs sector I

If Isz = Ivzzz = Iyyzz = Isysz = 0, then the Higgs potential
is CP-conserving. This means that there exists a basis in which all
Higgs potential parameters are real. If the vev is complex in this basis,
then the model exhibits spontaneous CP-violation. The corresponding
basis-independent conditions have been given by Lavoura and Silva and

by Botella and Silva. They define two invariants:
I = v Y, 5 ZpeeqVd » I, = vgv;ngYechafgvavd.

Then, the Higgs sector (excluding the couplings to fermions) conserves
CP if and only if I; and I5 are real. Evaluating the invariants I; and I
in the Higgs basis and applying the scalar potential minimum condition,

one finds
Im(Z6Z;) o< Im I , Im(Z_.Z2) oc Im I .

These authors also define additional invariants that include the Higgs-
fermion Yukawa matrices. One can then write down the appropriate
basis-independent conditions for a completely CP-conserving Higgs

sector.



‘ Unfinished business |

e Express all Higgs couplings in terms of invariants in the
most general CP-violating 2HDM (and explore the approach
to the decoupling limit).

e Evaluate the one-loop radiative corrections to various
Higgs processes in terms of the so-called physical tan (-
like parameters. (There are three such parameters in the

one-generation model.)

e Which tan 3-like parameters will be measured in precision
Higgs studies at a linear collider (LC)? How can one best
treat the full three-generation model to one loop order?
What simplications can be exploited in the MSSM?

e What is the physical significance of the four explicit CP-
violating invariants? Which (if any) could be measured in

precision Higgs studies at an LC?



