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Correlated Systems with Multicomponent Local Hilbert Spaces

Coordinators: George Jackeli, Natasha Perkins, Lucile Savary, and Oskar Vafek

KITP and the program coordinators will be delivering remote talk sessions to this program's participants.

Theorists often idealize descriptions of solids via simple models, e.g. Ising or Hubbard, with a very small local Hilbert space. Typically, magnetic models
involve s=1/2 spins on a lattice, and conductors are usually modeled by one or two bands. Similarly, many systems exist where magnetic and fermionic
degrees of freedom are coupled, e.g. Kondo systems and itinerant magnets, but the minimal physics is usually simple, and the models are often
considered in extreme limits. What happens when the local Hilbert space is larger and one must consider multiple entangled degrees of freedom? The
focus of attention of the condensed matter community has gradually been shifting towards physical systems where the latter appears to be true. While
some of these systems have been known for decades, a number of experimental and theoretical discoveries of strongly correlated phenomena have
caused a notable revival of interest in the field. For example, the interplay of magnetism and topological band structures, and twisted bilayer graphene
have proven to be very fertile areas.

This program will address the following questions: What entangled phases can one generate out of spin-orbital models? Are the natural/physical
interactions different in band touching systems? What phases can result from the coupling of two strongly interacting systems, magnetic and
conducting? How much of this physics exists in magic-angle twisted bilayer graphene and other moiré systems? Can such systems realize models
akin to the SYK model which itself involves the coupling of N orbitals? What are the prospects for studying these systems with numerics?

here: phenomenological approach to correlated systems w/o microscopic background
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A new approach to interactions

1) 1 < N < oo d.o.f. on each quantum cell

2.) asymptotically strong cellular interactions

3.) local maximum entropy/mean field/
disorder/entanglement principle
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1) 1 < N < oo d.o.f. on each quantum cell

2.) asymptotically strong cellular interactions

3.) local maximum entropy/mean field/
disorder/entanglement principle

4.) extension to arrays
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Correlated quantum matter via
the SYK paradigm

Correlated20, Oct. 1st 2020

Alexander Altland, Dmitry Bagrets (Cologne),
Alex Kamenev (Minnesota)

SYK model & conformal symmetry breaking
quantum fluctuations

granular extension

Nucl. Phys. B 911, 191 (2016)
Nucl. Phys. B 921, 727 (2017)
Phys. Rev. Lett. 123, 226801 (2019)
Phys. Rev. Lett. 123, 106601 (2019)
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iInvention in nuclear physics

Volume 34B. number 4 PHYSICS LETTERS 1 March 1971

TWO-BODY RANDOM HAMILTONIAN AND LEVEL DENSITY

O. BOHIGAS and J. FLORES %

Institut de Physique Nucléaive, Division de Physique Théorique I, 901- Orsay - France

Received 22 December 1970

Volume 33B, number 7 PHYSICS LETTERS 7 December 1970

VALIDITY OF RANDOM MATRIX THEORIES FOR MANY-PARTICLE SYSTEMS"*

J. B. FRENCH
Department of Physics and Astvonomy, University of Rochester, Rochester, New York. USA

and
S.S. M. WONG

Deparvtment of Physics, Univevrsity of Tovonto, Toronto, Canada
and Department of Physics and Astronomy, University of Rochesteyv, Rochester, New York, USA

Received 19 October 1970



rediscovery in cond-mat

VOLUME 69, NUMBER 16 PHYSICAL REVIEW LETTERS 19 OCTOBER 1992

Universal Quantum-Critical Dynamics of Two-Dimensional Antiferromagnets

Subir Sachdev and Jinwu Ye

Institute for Theoretical Physics, University of California, Santa Barbara, California 93106

and Center for Theoretical Physics, P.O. Box 6666, Yale University, New Haven, Connecticut 06511
(Received 13 April 1992)

The universal dynamic and static properties of two-dimensional antiferromagnets in the vicinity of a
zero-temperature phase transition from long-range magnetic order to a quantum-disordered phase are
studied. Random antiferromagnets with both Néel and spin-glass long-range magnetic order are con-
sidered. Explict quantum-critical dynamic scaling functions are computed in a 1//N expansion to two-
loop level for certain nonrandom, frustrated square-lattice antiferromagnets. Implications for neutron
scattering experiments on the doped cuprates are noted.

PACS numbers: 75.10.Jm, 05.30.Fk, 75.50.Ee



Sachdev-Ye-Kitaev Model (15)

A model of N randomly interacting Majorana fermions

N
H =2 JijuXiXiXeXt,  {xix;} = 20;;
ikl

SYK model

where the interaction constants are static and random,

(1 ijwt|*) = <75



SYK model & conformal
symmetry breaking



Strong interactions:

N
H = Z Jz’jkl Xi X3 XkXI
37kl

‘infinite range’, strong, chaotic: amenable to large N mean field methods



Strong interactions:

N
H = Z Jiikt XiXiXkXI
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‘infinite range’, strong, chaotic: amenable to large N mean field methods

first assault: diagrammatic expansion of Majorana propagator
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‘infinite range’, strong, chaotic: amenable to large N mean field methods

first assault: diagrammatic expansion of Majorana propagator

i : disorder average
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solution of mean field equations
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solution of mean field equations

S
X ) e) -

_G_
>
G = > =J[G]?

solutions (0, < J)

: numerical factor

b sgn(7 — 7')
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solution of mean field equations

S

_G_
>
G = > =J[G]?

solutions (0, < J)

: numerical factor

G(r,7) = b sgn(7 — 1) qﬁﬂr

J1/2 ‘7. . 7./,1/2
\ non-FL

b3 sen(r — 1)
JU2 |1 — 1/[3/2




Symmetries

p

action S[y] = [ dr(no.n + n*)
0

BA

iInteraction invariant under reparameterization of
time

f:8" = St f(r), f(7)
f € Diff(S1)

and transformation of fields

df 1/4
1) = n(f) = <E> G (f))

S[nl = Sln]

| broken by 0,

Elements of the diffeomorphism manifold describe reparameterizations of time.
Infinitesimally: generated by Virasoro algebra. Weakly broken by time derivatives
— problem has NCFT1 symmetry (Maldacena and Stanford, 15).



Symmetry of the mean field

sgn(t — 7')

G(1,7") ~
’ |7_ _ 7_/‘1/2
_ | _ at + b
invariant under conformal transformations 7 — g
T4+ C

each f € Diff(S?)/SL(2,R) generates new solution

Gi(z,7) = f (@) (@) *G(f(z), G(f(z)



Symmetry of the mean field

sgn(t — 7')
|7_ _7_/‘1/2

G(1,7") ~

at + b

invariant under conformal transformations 7 —

dT + c

each f € Diff(S?)/SL(2,R) generates new solution

Gi(z,7) = f (@) (@) *G(f(z), G(f(z)

\ G emergence of infinite dimensional
SL(2, R) Goldstone mode manifold

Diff (S*)/SL(2, R)
/ Diff (S1)




Quantum fluctuations



AF spin chain SYK




AF spin chain SYK

U representation quantum partition sum G2 action




AF spin chain

SYK

S>3, G

J

trln(0; + X)) + 1

p
/ drdr" ((Gr+)* + %+ Gr 1)
0

Sachdev, Ye 91



AF spin chain SYK

U representation quantum partition sum G2 action

mean field Neel state, (m) Green function, (G)




AF spin chain SYK

U representation quantum partition sum G2 action

mean field Neel state, (m) Green function, (G)

Goldstone modes | O(3)/O(2) - fluctuations Diff(S1)/SL(2,R) - fluctuations




AF spin chain

SYK

U representation

mean field

Goldstone modes

symmetry breaking

quantum partition sum

Neel state, (m)

O(3)/0(2) - fluctuations

external magnetic field

(X action

Green function, (G)

Diff(S1)/SL(2,R) - fluctuations

time derivative, 0,
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SYK

U representation

mean field

Goldstone modes

symmetry breaking

low energy action

quantum partition sum

Neel state, (m)

O(3)/0(2) - fluctuations

external magnetic field

o-model action, S[n]

(X action

Green function, (G)

Diff(S1)/SL(2,R) - fluctuations
time derivative, 0,

Schwarzian action, S| f]

Liouville action, S[¢]



AF spin chain SYK

U representation quantum partition sum G2 action

mean field Neel state, (m) Green function, (G)

Goldstone modes | O(3)/O(2) - fluctuations Diff(S1)/SL(2,R) - fluctuations
symmetry breaking | external magnetic field time derivative, 0,

low energy action | o-model action, S|[n] Schwarzian action, S| f]

Liouville action, S[¢]

symmetry (m) - 0 (G) >0
restauration (m(x)m(y)) non-trivial (G(71)G(1"))

anomalous dimensions anomalous dimensions




AF spin chain

SYK

U representation

mean field

Goldstone modes

symmetry breaking

low energy action

symmetry
restauration

quantum partition sum

Neel state, (m)

O(3)/0(2) - fluctuations

external magnetic field

o-model action, S[n]

(m) — 0
(m(x)m(y)) non-trivial

anomalous dimensions

(X action

Green function, {G)

Diff(S1)/SL(2,R) - fluctuations

time derivative, 0,

Schwarzian action, S| f]

Liouville action, S[¢]

(G) > 0
(G(1)G(7))

anomalous dimensions




Liouville Quantum mechanics

reparameterization: f'(7) = exp(¢(7))

,. , |
Z=|Dpe>?  S[p]=M|dr <Eaf¢2+2e¢>

(7 (Y

b2
M = —— Nlog (N
=37 og (V)

Etime scale at which
: fluctuations become
: strong

effect of low energy Goldstone mode fluctuations

encapsulated in Liouville QM. Universal feature

(Shelton, Tsvelik 98): operator correlation functions

decay as Al

/

(O(N)O()) ~ |7 — 7|7




Sanity check I: Green function

path integral representation of Green function
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Sanity check I: Green function

path integral representation of Green function

b ! X da _g (2 ds et
N = Z(¢(Tl)—|—¢(7'2)) e Oéle ds e
GrtnT) v J1/2 <6 0 Va© >¢
\ 4
ib (2 \'? k sinh(27k) 9%
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Sanity check I: Green function

SYK Green function beyond mean field: resurrection of full symmetry at small energies
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OFY: O g
o O |
0.5 : :
0.9 - - N
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: ed ed

:  mean field
: strong Goldstone mode
: fluctuations

analytical GF numerical (N=24) GF



GGreen function crossover

—1/4

[n] ~
7_3/4,




applications

modeling correlated quantum matter as

% % % SYK arrays

understanding AdS/CFT correspondence

understanding the quantum mechanics
of chaotic Fock spaces




granular extension &
guantum criticality



granular quantum matter from SYK

@ @ % H = ZI:ISYK(ﬂa) + Hy
Z VoI
&

(V)2 =

2




mean field physics (Song et al. 717)

for N = o00: G(7,7) ~ (n(0n())syk ~ | e = [n]=7""
T—7T
151] = Jdrmy = gl=2X1i4 — 7172 relevant perturbation
iInter-dot tunneling induces crossover between I
NFL/strange metal phase at high temperatures SM

(thermal conductance k = const.)

FL/metallic phase at low temperatures (k ~ T) L= g .




mean field physics (Song et al. 717)

= [;,]] — T_1/4

forN - 0o: G(r,7) ~ <77(T)77(T,)>SYK ~

|7 =7

[ST] — deﬂﬂ — 7/.1—2)(1/4 — T

iInter-dot tunneling induces crossover between

NFL/strange metal phase at high temperatures SM

(thermal conductance k = const.)

1 1/2

12 relevant perturbation

FL/metallic phase at low temperatures (k ~ T) L= g .

crossover temperature




physics of mesoscopic granules (N finite)

—1

2nd energy scale 1 = M~ causes competition upon lowering temperature

[S;] _Jd | Gl=pm=dt  T>Tr
— T — —
T _ ’7’7_ nn 312 T<T,




physics of mesoscopic granules (N finite)

2nd energy scale 1y = M1
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physics of mesoscopic granules (N finite)

2nd energy scale 1y = M1

[S;] _Jd | Gl=pm=dt  T>Tr
— T — —
T _ ’7’7_ nn 312 T<T,

causes competition upon lowering temperature

T
B TFL
& TF

[ST] — Z1_2X3/4 — t—1/2

_ L 12x1/4 _ L1/
[St] = ¢ =1 irrelevant perturbation

relevant perturbation
~ Ty
= TF

v v

metallic phase insulating phase

V2

guantum phase transition at 1 ~ 1y < 7 ~M! ~ N (cf. Lunkin et al. 18)



theoretical formulation

start from extended G action

SIG. 2] = ) S)[G* 2+ ) $i[G“, G]
a (ab)

project to mean-field/reparameterization sector

Solh] = —m ) [dT (h%, 1},

hihy hPhy .
Silhl = —w ) |dr,d X
nid @Zbyl 7147, ht — he [t — T2

two parameter theory defined through dimensionful constants
[m] = time
lw] = energy

run RG: 'h = hy + hy;



RG flow cont’d




... leading to phase diagram
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summary

SYK cell a paradigm of interacting quantum matter

analytically approachable

physics governed by universal quantum fluctuations

a building block for the modeling of correlated phases



Holographic interpretation (Maldacena & Stanford, 16; Aimheiri & Polchinksi, 16)
Consider 2d Einstein-Hilbert action

:also constant : positive cosmological
:constant
o

167G /\/§(R T A)

Sgravitational constant

S =

action invariant under conformal deformations of 2d space (because it is topological)
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Consider 2d Einstein-Hilbert action

:also constant : positive cosmological
:constant
o

167G /\/ﬁ(R—I— A)

Egravitational constant

g —

action invariant under conformal deformations of 2d space (because it is topological)

:boundary
:(Where SYK lives)

Ecompactified space



Holographic interpretation (Maldacena & Stanford, 16; Aimheiri & Polchinksi, 16)
Consider 2d Einstein-Hilbert action

:also constant : positive cosmological
:constant
o

167G /\/ﬁ(R—I— A)

Egravitational constant

S =

action invariant under conformal deformations of 2d space (because it is topological)

deformation mode

conformal




Holographic interpretation (Maldacena & Stanford, 16; Aimheiri & Polchinksi, 16)
Consider 2d Einstein-Hilbert action

:also constant : positive cosmological
: iconstant

> = 167SG/\/§(R+A)

Sgravitational constant

action invariant under conformal deformations of 2d space (because it is topological)

AdS metric (spontaneously) breaks symmetry to SL(2,R). Reparameterization
Goldstone modes without action.



Holographic interpretation (continued)

Improve situation by upgrading pure gravity action to dilaton action

inow a field

)
S = 1§£G/\@(R+A) >167TG/\/§¢(R+A)+...

Jackiw Teitelboim gravity

This action (i) is non-topological, (ii) fluctuations of the dilaton field weakly break
conformal symmetry and (iii) afford physical interpretation if AdS2 action is seen as
boundary theory of higher dimensional extremal black hole.

Combination (i-iii) motivates boundary with conformal invariance breaking and
signatures of quantum chaos.



