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How to Reduce the
Dissipation in Glasses

Introduction to glasses at low temperatures
(specific heat, thermal conductivity, two-level-
systems model)

Introduction to dissipation in glasses ( how tfo
measure dissipation and theory )

How tfo reduce acoustic dissipation in glasses (high
stress increases harrier heights of defects)

Conelusion
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Introduction to glasses
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Structural glasses

Solids but no long range order

" QUARTZ-CRYSTAL" “QUARTZ-GLASS™

Fig. 1. Schematic representation of crystalline and glassy quartz structure with three possible
types of two-state defects in the glass (A, B and C) [19].

I — —

from Jackleet.al., J.0f.Non-cry. Solid. (1976)
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Specific heat
CT‘3 Glasg . Crystals

f Debye theory gives
1 Boson peak C(T) < T

:/ Crystal Glasses

T Specific heat
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e 1) islinearinT at
Figure 1. The heat capacity C(T) of vitreous silica and crystalline quartz as a function of
temperatute T (Jones 1982, after Zeller and Pohl 19%71), plotted as C/T° against T. ' 1. p r ‘l'u r

linear on T Debye theory  2) has peak at 10K

from W.A.Phillips,Rep. Prog.Phys. (1987)
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Linear T terwm in specific heat
C(T)~T
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FIGURE 1 Low temperature specific heat of vitreous S10, from Rel. 27. Notice
that the specific heat is slightly superlinear.

Zeller and Pohl, (197 2)

Seenin a wide
variety of glasses

from Yu and Leggett
Comments Cond. Mat. Phys.
(1988)
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Poson peak

104 T l
T PS___.
x ------
A | PMMA__
&)

i 1 GLYCEROL 4

s " Seen around 10 K
o
-
(5 _@EE&‘_&NM m

10‘%_1 ; 110 100

TEMPERATURE (K)

FIGURE 3 C/T? versus T from Ref. 5. Notice the bump is between 3 and 10 K.

from Yu and Leggett
Comments Cond. Mat. Phys.
(1988)
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Therwmal conduvetivity
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Figure 2. The thermal conductivity «(T) of vitreous silica and crystalline quartz {Jones

1982, after Zeller and Pohl 1971), plotted logarithmically. from K.O.POhl,etal.,KMP (20 02)
from W.A.Phillips,Rep. Prog.Phys. (1987)
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Mean free path of phonons deduced from
thermal conduvetivity

K(T)=%jcph(w) V (@) do

~4
10 = IREBRLERLL R LEARL IR

0, =150

107 |-

10‘6} 4

| KMFP o< A

? 10"

10‘8;—

: ZMFP o< A
107 sio, ot T=K

: from Freeman.et.al., PRB (1980)
" 10“’4 | miﬂo"l 12)5 10°

v (Hz) 9
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Explanation of these
unusval properties
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Low energy excitation in
glasses

" QUARTZ- CRYSTAL" “QUARTZ-GLASS™

Fig. 1. Schematic representation of crystalline and glassy quartz structure with three possible
types of two-state defects in the glass (A, B and C) [19].

from JJackle,et.al., J.0f.Non-cry. Solid. (1976)
1
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E(x)

\2L =

Two-level systems

model
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Anderson, et al., (1972),

Phillips (1972)
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Two-Level Systems in glasses (Open question:
What is the microscopic nature of TLS 7)

A Asymmetry energy : uniform distribution

_v2mvd Tynneling energy: barrier heights V
Ay=w,e " satisfy uniform distribution
( we use Gaussian distribution
instead)

E(X)

w, Zero point energy
of single well

| | Anderson, et al., (1972),
=9 - X Phillips (197 2),
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Specific heat: linear T term

; EEaEm occupation
Simple derivation:  pymber energy of TLS

e e

Average E(T)= j dEf(E)E n(E)
enerqy
1 \ density of
=n, | dE g Eo<n T state of
= e +1 TLS
E
T)= = o n,T
C(T) 3T ny,

Anderson, et al., (197 2),
Phillips (197 2)
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Extend wmodel to higher T:
Einstein osclllafars

* Approximate E(x)

excitations at high
energy by harwonic
oscillators (Einstein : i :
oscillators = EQ). .

* EQ is responsible for a0 F
the peak in the

specific heat around Yu and Freeman, PRB (1 987)
pOS, 10K.

TLg - n(E)=n,[1+ S,0(E — ho,)]
E

W 15
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Specific heat over a broad
temperature regime

C=Chupye T Cps +Cpp
. Einstein

10° R 0 T A
----- High Stress Si,N .
N S’:?ess Fr;:izv;?& 4Si3N4 O SCI l ' a‘l'o Y
10° N £ 50nm Sil\.l1_15 _
L R N e (Boson peak)
X~ . N | ‘ i _
< 4o 2 G
= \\\ ;:"“:?ﬁ!‘; i
no 10 \\\ Si .m /
AR T i 2 N _

Two-Level
Systems o T e e

T (K)

Solid and dash lines: Predicted
SiN115: from Southworth, et al., PRL (2009)

a-Si02: from Yu and Freeman, RPB (1987)
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Therwmal conduvetivity

Heat is transported by phonons in glasses (Zaitlin and
Anderson, 1975)

K(T)=— ijh V lywp(@) do

/ \ How far

How much energy a phonon can go
a phonon can carry before it hits something
How fast

a phonon goes
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Resonant scattering of TLS

Phonons (photons) are absorbed and emitted
when a TLS is excited and de-excited
d=Er pheEy

0 = o tanh ~ @ for ha > k,T
MFP ,Resonance \ 2 kBT / g Bl

TPy’
a=""1

PV
N\/“ E I-\/\/\'V F s(pec’rral d?nﬂi"g)/

density o
ho

deformation potential
h (D) = E y (co

upling of TLS and phonons)
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Therwmal conduetivity goes as
T2 at low temperatures

K(T):%fcph(w) V V(@) do

\
Debye theory C ptrp o %) s yT
T3

K(T) o< T"
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Plateau in therwmal
conductivity

X 102

Plateav dominated by Rayleigh
scattering of phonons

N, O AV

Phonons (photons) are scattered by atoms
or small size defects

cm’

— —
Q Q
- @

—
<
S

Thermal Conductivity (W

—
<
o]

i) = 4
fMFP,Rayleigh = BO
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Four mechanisms contribute to
phonon scattering

* Resonant scattering of phonons from TLS
* TLS relaxation
* Rayleigh scattering

* Scattering from Einstein oscillators

i T =1
gMFP,Resonant i gMFP, Relaxation s gMFP,Rayleigh W < wE

= |
KMFP = f

-1 -1 -1
gMFP,Resonant - gMFP,Relaxation T gMFP,Einstein @ > a)E

Combininkg two wmodels: Yu-Freeman,PRB (1 98} ) &
Hunklinger, PRB (1992)
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Phonon scattering dve to TLS
relaxation (dominates at low
frequencies)

Phonons (photons) modulate TLS energy splitting. TLS
population redistributes to achieve new equilibrium.

N\/Ti_ P(A,V) = 2e_(v_vo Ve

L,

2V D
. 010)) ha A T
= g a0 faspia | 8 | £ 0
0 B
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Two processes of TLS
relaxation

Relaxation time

= = -1
Y= TTunneling + TThermal Activation

Tunneling Ty

o h
A, = m,¢

u

7
T e = AAZE coth( kaT j
B

Thermal activation

1 =n i cosh(

TThermal Activation

2k,T
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Phonon scattering from

Einstein oscillators

Phonons (photons) are absorbed and emitted when
a harwonic oscillator is excited and de-excited

24

008 Infinite number of levels
%

TLS Sk-
/5

W

n(E)=n,[1+ S O(E - ho,)]
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Therwmal conduvetivity

10-1- i S I BRI ] B R | Rl i = R R R | T O
miE RS High Stress Si;N, (x0.1) :
100 = - Stress Relieved Si,N,
2 AS0Nm SINLLE LT TE T LT L L L ;
210 ©200nmSiN,,,
= 1 0 a=SioO S ) o e e :
O 0T TE 2 DA
3
s 10° |
=
EE Rl
E 2 B v
— 1 O_ ‘ A s s [
o | Kaylelgh Einstein Oscillators
1O 1

Solid anil dashiines: Predioted. \TLS (resonance relaxation)

SiN115: from Southworth, et al., PRL (2009)

a-Si02: from Yu and Freeman, RPB (1987)
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Introduction to
acoustic dissipation
in glasses
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How to measure the
dissipation in glasses
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Measuring acoustic
dissipation in glasses

EXPERIMENTAL SET-UP

ORIVE \%@ Z/

PICKUP

Amplitude (arb units)

fo
fo 12

fol 2 REF |INPUT ”;71 BIAS fO
vco@ COUNTER ~ LOCKIN Qualifv fachl’ Q—l 1 f_o
N lo° (internal friction) Af
< o e Raychaudhuriet al.

INTEGRATOR Z.ths-B (1984)
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Universal dissipation in

glasses

For various glasses such as
8i02, B203...at 0.1K <T<10K

Q' ~107*-10"

Due to two-level-systems
(TLS) at low temperatures

Anderson, et al., (1972), Phillips
(1972), Jackle (1972)

Zelleret al.,.PRB (197 1)

10
B O G 02 \-4' : ,
B TR s
o P
S g4l o AT f _
S 10 (T T T T T\ L
kS CdGeAs,
= 10° As,S,  Pd,Si Cu, P
= Sio,
2 |
= 1% |
Amorphous Solids
107

102 10" 10° 10" 102 10°
Temperature (K)

"R.0.Pohl et al.. RMP (2002)
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Why do we want to reduce
the dissipation in glasses?

30
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Motivation: high Q ( low
dissipation) is important!

* Example 1: Resonant mass sensor ( Q will determine
the minimuwm mass detectable)

gumgtesy Si nanowire
X}Z\’y .~7/;\*W\;\>/

" frow Ekineiet al., JAP (2004)

31

——




Motivation: high Q ( low
dissipation) is important!

* Example 2: SQUIDs are used as qubits; need to reduce
the noise.

* Charge noise is proportional to the dielectric loss
tangent of substrate.

via

junction

SiN,

ALO,

: LS .~ X
Martiniset al., PRL (2005)

In glasses, at low temperature and low frequency, acoustic dissipation
(phonons) and dielectric loss (photons) are all due fo TLS.
S. Hunklinger, PLTP (1984)
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Since dissipation is
ubiquitous in glasses,
can we reduce it?
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Yes! Anomalously low
- (dissipation in SisN4

— c .' ol lllllll | I lllllll | R LELELLL
a“fl ever 10'3 a'Si02 —§
550 -
9

104 — =
- %10'5 =|-.---l-l.'-...-l -
o = o e-beam deposited a-Si [5] S
1.0 . . ' . © - A (as dep.) m (annealed) SiN [6] -
drumhead £, % -
S 2L 106 8 —
T 06 - S 08§ 96¢ =
E— . - ’.,'Jg 28 8§ Y9T e E
O o4 o0,0,0 Stress-relieved SizN, B

= v,e,m,+ High-Stress Si;N
02 10'? —t —
[ = =
E 0.0 ] 1 1 ! ~ -
< 250 -1.25 0.00 1.25 2.50 : Silicon padd|e :
Frequency (f-fO) [Hz] 10-8 | L 111 IIII | | 111 IIII | L 11

PR Southworth, et.al., PRL L e
(2009)
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Why does high stress reduce
dissipation of SisN4 so
dramatically ?

Why does stress-relieved SizN4
have an order of magnitude
lower in dissipation than SiO; ?

ooooooooooooooooooooooo



Why does high stress reduce the
dissipation in glasses 7
Answer:

Relaxation via tunneling and thermal
activation is exponentially sensitive to V.
High stress increases the barrier heights

V, effectively reducing the number of

defects that produce dissipation.

36
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Theory of dissipation in
glasses

phonon
o' = A =" wavelength

( MFEP

Dissipation and thermal conductivity
are all related o the mean free path of phonons
(photons)
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Four mechanisms contribute to
the dissipation

0.1K <T <10K w ~1 MHz

* Resonant scattering of phonons from TLS Qreconance ~ 107

* TLS relaxation O 10
* Rayleigh scattering OF o
ayleig

* Scattering from Einstein oscillators  Quly involved at high T

Therefore, relaxation dominates

38
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Pissipation due to TLS
relaxation

-1 2Qo 5 10, é 2 T
Ortion = —— [ aV j dAP(A,V)sech (ZkBT](E) e

Kelaxaflon time
T 1 TTunnelmg T TTh rmal Activatio

Tunneling . Gavssian distribution
Eegiaa AAéEcoth(ZZwT] A =we »  ofbarrier heights V
Therwmal activation p -V
A _17 P(A,V) = —€ :

T;Iiermal Activation == T(; 1 COSh € T4 E

5 o
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Pissipation at low
temperature

10 - SUPRASIL W

_or aSi0z

Tunneling ——— R ‘ i\
“f At Thermal
Uni | )| "y activation
niversa f .
e V2/1OT1EMPER;\$LRE (K1)O1 ©
. EEEEN . |
Q, ~I—c - S. Hunklinger, PRB (1992)
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Why low stress SisN4 has low dissipation
compared with Si027

3- or 4-fold
coordinated materials
will have extra
constraints, producing
non-relieved strain
enerqy, thus
increasing the barrier
heights. Vo is nonzero
compared to a-Si02

i) BeuEaARe 2
P(AV)=—e A ¥
Eo

vt

\
@

a-Si02

V,=0K
o, =445K

41
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Why high stress can reduce
dissipation in glasses ?

High stress increases the
strain energy, thus
increasing the barrier
heights. Vo is increased

compared with low stress
SisNs

42
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Dissipation of SisN4

SisNs: Queen, et al.,RS1(2009) V, =0K
a-Si02: f;’gg@ Yu and Freeman, RPB (1987) ol 145K
: 10° V., =13500K
pranae: o, = 9000K
&3 1]
2
o
£ 10 0 a-Sio, Vo =25300K
= A Stress Relieved Si,N,
§ 10" o High Stress Si,N, O, = 7500K
o 5 (V=V,)?
1 107 10 10° 10’ 10° 10° P(A,V)zﬁe %63
AE R/ ey ZNEANESE)
1 = 20 !
%= oV high stress
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Conclusion

* Universal properties of glasses, such as dissipation,
specific heat, and thermal conductivity can be well
described by a two level system and Einstein
oscillator model.

* Glasses made of 3- or 4-fold coordinated materials
and glasses in the presence of high stress can have
very low dissipation.

* High stress increases barrier heights of defects,
etfectively reducing the number of defects
producing dissipation.
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