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Disclaimer

® What is this talk about!?

® Understand the stability of topologically-protected quantum
computing proposals using spin glasses.

® New applications of the glass machinery.

® What is this talk not about!?
® A talk on quantum computing.

® A talk on spin glasses.

® Brief outline:
® Error correction using topology.
® Topological color codes.

® Stability against bit flip and measurement errors.




Motivation




General motivation

® Why should we care about quantum computers?
® Faster computations (prime decomposition, search algorithms...).
® Quantum cryptography.

® Quantum simulators (Fermionic models, ...).

® Current “working” implementations

H

® Trapped ions (e.g., XOR via Be |ons) @\ NIST (95)

® Nuclear Magnetic Resonance. @ 18M (01)
® Solid state (quantum dots, JJAs, SCs) oH

® Problems:
® Scalability (~ 100 qubits).

® Decoherence.




Sources of decoherence:
® |nitial state preparation & faulty gate execution. ,

® Local noise, interaction with a bath.

How can we overcome decoherence!?

® Software: Better codes, smarter quantum error correction

® Hardware: = More qubits, error correction via redundancy

Problem:
® More qubits =——3» more errors.

Solution: Use topology!
® Hardware encoding to protect states.

® Software approach via active error correction.




Using.topology.for.quantum computation

® Fault-tolerant quantum computer:

“A device that works efficiently even when

its elementary components are imperfect.”
Preskill (97)

® Topologically-protected quantum computation:

® Errors happen locally (e.g., bit flips).
® Exploit the global (topological) properties of a system.

® Introduce active error correction (here software level).

«. @ ~p “ @ ey

® First proposal: Toric code ... ann. Phys. (03)

® Ground state is a (topological) loop gas. Dennis et al. (02)

® CNOT, X and Z Pauli gates can be implemented, pc ~ 10.9%.
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Topological color codes




opological color.codes

® Alternative: Topological color codes Toric Code
Kitaev (97)

Similar to the Kitaev proposal.

iImiliar to | | VvV Propo | H:—ZAS—ZBp
Encodes twice the number of qubits - >

as a Toric (Kitaev) Code. 4 — H 7
The whole Clifford group of gates can c /

be implemented stabilizer JE+s

The phase gate K can be implemented By = H A

jellp

transversally.
- ( ; O >
0 ¢

® How do color codes work!?
® Defined in terms of a (local) stabilizer group.
® Measurement detects the errors.

® Active error correction applies (up to a threshold).
Bombin & Martin-Delgado, PRL (06)
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opological .color.codes (the details

Bombin & Martin-Delgado, PRL (06)

Start from a 2D 3-colorable (
triangular lattice.

Embed the lattice in a (
nontrivial compact (
o

surface.
4/8 triangles per vertex (phase gate).

A qubit is placed on each triangle.
Stabilizer group:

X, = ® XA 2y = ® AN

N:vEN N:vEeEN

Note: vertex operators pairwise commute and square to unity.
The code is defined on the subspace with X, = 2, =1 Vv,
Error syndrome: collection of | eigenvalues.

X (bit-flip) and Z (phase) operators do not mix: study only bit flips.




Bit-flip errors




J hreshold: map .to a statistical model

® Error correction is achievable if:

Y P(E)P(E|OE) -1 N — o
E Dennis et al.,] Math Phys (02)
o P(F) x |p/(1— p)]|E| E'is a bit-flip error with probability p

o P(E|OFE) probability that a syndrome OF was
caused by an error in the homology
class .

® Mapping:
® Nishimori line: exp(—2J) = p/(1 —p) —> P(E) x exp(d_ A )
-1 ; negative when A € F.

® Insert classical spin variables S* = 41 at the vertices to obtain:

D ... QtQJ Qk
P(E) X Z[J, 7'] = E e‘jz<ijk> TijkS S7 S
g  Katzgraber et al,,, PRL (09), PRA (10)




Bit-flip.errors:random 3-body.lsing.model

® Hamiltonian:

H=J» 7SS/ s"
(igk)

® Details:

® Ising spins $ on the vertices
of a 2D Union Jack lattice.

® A bit-flip error corresponds to 7;;x = —1 with probability p.

® p > 0:glassy Ising model (3-body interactions).

® Note: the Toric Code maps onto a 2D random-bond Ising model.

® Error threshold:
® Compute the p—T. phase diagram of the model.

® p. corresponds to the critical p along the Nishimori line where
ferromagnetic order is lost. Dennis et al, ] Math Phys (02)




Interlude: Algorithms




Monte Carlo & the Metropolis.algorithn

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NicHorLAsS METROPOLIS, ARIANNA W, ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AuGUstAa H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EpwARD TELLER,* Department of Physics, Untversily of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION II. THE GENERAL METHOD FOR AN ARBITRARY

. . . POTENTIAL BETWEEN THE PARTICLES
HE purpose of this paper is to describe a general

method, suitable for fast electronic computing In order to reduce the problem to a feasible size for
machines, of calculating the properties of any substance numer ical work, we can, of course, consider only a finite
which may be considered as composed of interacting number of particles. This numberoN may be as high as
individual molecules. Classical statistics is assumed, Several hundred. Our system consists of a squaret con-
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Monte Carlo & .the Metropolis.algorithm

HE purpose of this paper is to describe a general
method, suitable for fast electronic computing
machines, of calculating the properties of any substance

which may be considered as composed of mmteracting
individual molecules. Classical statistics 1s assumed,




tandard Monte Carlo

e Goal: Compute a thermodynamic average of an observable O:

® Problem: The number of states is exponentially large
(N Ising spins =——3 2N states).

® OSolution:  Statistically sample a subset of smartly
chosen states but with a statistical error.

o Select the states according to P %to obtain a Markov chain for (O) st

M
1 . .
(O)est = i E O;  Mis the number of trials.

® Metropolis algorithm: accept new configuration

if(e‘AE/T >rand())  Paccept = min(1, e_AE/T)
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VVhy.does simple Monte Carlo fail here?

® The systems we are interested
in have rugged energy landscapes.

® At low temperature, when A E
is large

Paccept — min(:-y G_AE/T)

is “‘never”’ accepted.

® How can we resolve the problem!?
® Tunnel trough barrier.

® Heat up the system to overcome the barrier.
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xchange (parallel tempering) Monte Carlo

o Efficient algorithm to treat spin glasses
® |dea:

® Simulate M copies of the system at
temperatures with Tmax > T (typica

Hukushima & Nemoto (96)
at finite T. Geyer (91)

different
ly Trmax ~2TMF).

® Allow swapping of neighboring tem

peratures:

easy Crossing of barriers. see,e.g.,Katzgraber et al., |STAT (06)

E A f'\ A P(E)

o d |
configuration space Ty

® Extremely fast equilibration at low temperatures (~10%).

® Transition probabilities:
T[(EZ, Tz) — (Ei_|_1, T7;_|_1)] — min

{1,exp|AE;+1,:ABi+1.]}



Back to bit-flip errors...




ODINg . : orrelation A€

o £ ot

Study the finite-size two-point correlation function.

Sl

Cooper (82)

k-space susceptibility of the magnetization...

1

_ i QJ ik(R;—R;)
x(k) = 7 ) _(5"57)re
(4]

Perform an Ornstein-Zernicke approximation...
X(B)/x(0)] 7 =1+ &K% + O[(k)"]

Compute the two-point correlation function:

D (0]
f N 2 sin(kmin/Q) \/[X(kmin)]av :




Probing criticality:correlationdength

® Study the finite-size two-point correlation function. Cooper (82)

® Scaling behavior:
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Benchmark.case:p =.0

H=J)» 7SS’ s"
(i5k)
® The critical parameters
can be computed exactly: 1.2
o T.=TMsne=127269...
ov=23/4 N 1

&
o =1/2 w

2D union jack
p = 0.000

1.4

A
A\

t~

® Agreement with 0.8
exact results. '

OmpD>eO

® Next: Perform a finite- 0.6

size scaling of the data...




caling with known exponents(p,=.0

® Fixed parameters: : T T
o T.=T/she=2.7269... : 2D union jack

ov=23/4 I p = 0.00
v = 3/4

Tc — Tcising

~]
® The finite-size \E
scaling is perfect. had

® Next: introduce
errors by flipping bits

Tijk — —Tijk




Introduce . qubit.error;

® For each value of p
compute .

® Corrections around
p ~ 0.108.
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Introduce qubit.errors with .p >.0

1.2 | | | | | | | | | | | | | | | |
® For each value of p -

compute .
p = 0.110

® Corrections around
p ~ 0.108.

ad
\




ntroduce qubit.errors with b >.0

® For each value of p
compute .

® Corrections around
p ~ 0.108.

T

-
o~
NS f ]
\J

0.8 1 1.2 1.4 1.6
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b—I.phase . diagram &.error.threshold

2.5 rrrrrrryrrrrrrrjrrrirrrryprirrirrrrjprirrrrrrjprrirrrrrypnril

54 CPU years later...

Error threshold:

pe = 0.109(2)

paramagnet

Note: p. does not violate
the Gilbert-Varshamov
bound p ~ 0.110027. &

Same as Kitaev model
and TCC on triangular
lattices.

1.5

ferromagnet "
error correction feasible '1

O_III||||||||||||||||||||||||||||||||||||||||ﬁ|||ﬁ|||
Phys. Rev.A 81,012319 (2010) 0 0.02 0.04 0.06 0.08 0.1 0.12

Phys. Rev. Lett. 103,090501 (2009) P
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Do wider computational capabilities
imply a lower resistance to bit flips?
O Y I | ° IIIIII|IIIIIIIllllllllllllﬁlllﬁlll

Phys. Rev.A 81,012319 (2010) 0 0. 4 0.06 008 0.1 0.12
Phys. Rev. Lett. 103, 090501 (2009) p




Measurement errors




Add .measurement.er

bit-flip errors 2D random model

error rate p

measurement errors 3D lattice gauge theory
(

A

- ¢

error rate




[ _disordered lattice gauge theor

2D random model

B H=J)» 7ips'sst
(igk)

3D lattice gauge theory

H=—) Jils]s - Kk[S’“](,;
S

E
—1 probability p, q

Jr Bk = {+1 (1-p),(1—q)




[ _disordered lattice gauge theor

2D random model

H=1J>» 7in5s Sk
(i5k)

for simplicity p = q...

3D lattice gauge theory

—1 probability p, q
(1-p),(1—gq)




Order.parameter

® Problems:

® Local order parameters (magnetization)
do not work for LGTs.

® The transition is first order.

® Both specific heat and energy imprecise.

® Solution:

® Wilson loops in the hexagon plane

1
) —

N
loops loops j€loop

S;

® Note: here we use minimal loops over
one plaquette to reduce corrections.
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VVilson loop distribution (p.,=.3%
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L=12,p=0.03,7 = 1.12 ——

VVilson loop distribution(p.=.3%
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kewness.as.a . Binder.parameter>
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kewness.as.a. Binder.parameter>

agrees with C, and E, Maxwell
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rror.threshold with . measurement.error:

23 CPU years later... 16
Extrapolate (L — o0)... 1.4 & N.line
Threshold: 1.2 | .

1.0 | o
De = (),()45(2) . . . ordered phase

& i o
\-5 08 i 0]

paramagnet

= :
Revisit TC (bc = 3%) 0.6 |

Ohno et al., Nuc Phys B (04) 0.4 L

0.2 |

OO'lllll
® See also: 0.00 0.01 0.02 0.03 0.04 0.05 0.06

® Phys. Rev. Lett. 103, 090501 (2009) p
® Phys.Rev.A 81,012319 (2010)

® arXiv:quant-phys/1005.0777, PRL subm.

arXiv:quant-phys/1005.0777
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rrorathreshold with.measurement.eriror:

23 CPU years later... 16
Extrapolate (L — o0)... 1.4 ¢ Nline
Threshold: 2} e

paramagnet
e

ordered phase

Pc

Are TCCs stable towards bit-flip and
measurement errors?
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® See also: 0.00 0.01 0.03 0.04 0.05 0.06
> Phys. Rev. Lett. 103,090501 (2009) P

® Phys.Rev.A 81,012319 (2010)
® arXiv:quant-phys/1005.0777, PRL subm.
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