
http://katzgraber.org

Understanding the stability of topologically-protected 
quantum computing proposals using spin glasses

Helmut G. Katzgraber (TAMU, ETH)
Ruben S. Andrist (ETH)
H. Bombin (Perimeter Inst.)
M.-A. Martin-Delgado (UCM)
C. K. Thomas (TAMU)

http://katzgraber.org
http://katzgraber.org


Disclaimer

What is this talk about?
Understand the stability of topologically-protected quantum 
computing proposals using spin glasses.
New applications of the glass machinery. 

What is this talk not about?
A talk on quantum computing.
A talk on spin glasses.

Brief outline:
Error correction using topology.
Topological color codes.
Stability against bit flip and measurement errors.



Motivation



General motivation

Why should we care about quantum computers?
Faster computations (prime decomposition, search algorithms…).
Quantum cryptography.
Quantum simulators (Fermionic models, …).

Current “working” implementations
Trapped ions (e.g., XOR via Be ions).
Nuclear Magnetic Resonance.
Solid state (quantum dots, JJAs, SCs).

Problems:
Scalability (~ 100 qubits).
Decoherence.
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Decoherence

Sources of decoherence:
Initial state preparation & faulty gate execution.
Local noise, interaction with a bath.

How can we overcome decoherence?
Software: 	

 	

 Better codes, smarter quantum error correction
Hardware:	

	

 More qubits, error correction via redundancy

Problem:
More qubits               more errors.

Solution: Use topology!
Hardware encoding to protect states.
Software approach via active error correction.



Using topology for quantum computation
Fault-tolerant quantum computer:

	

 	

 “A device that works efficiently even when 
	

 	

 its elementary components are imperfect.”

Topologically-protected quantum computation:
Errors happen locally (e.g., bit flips).
Exploit the global (topological) properties of a system.
Introduce active error correction (here software level).

First proposal:  Toric code
Ground state is a (topological) loop gas.
CNOT, X and Z Pauli gates can be implemented, pc ~ 10.9%.

Kitaev Ann. Phys. (03)
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Topological color codes



Topological color codes

Alternative:  Topological color codes
Similar to the Kitaev proposal.
Encodes twice the number of qubits 
as a Toric (Kitaev) Code.
The whole Clifford group of gates can 
be implemented.
The phase gate K can be implemented 
transversally.

How do color codes work?
Defined in terms of a (local) stabilizer group.
Measurement detects the errors.
Active error correction applies (up to a threshold).

Bombin & Martin-Delgado, PRL (06)
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Do wider computational capabilities 
imply a lower resistance to noise?
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Topological color codes (the details)

Start from a 2D 3-colorable
triangular lattice.
Embed the lattice in a 
nontrivial compact 
surface. 
4/8 triangles per vertex (phase gate).
A qubit is placed on each triangle.
Stabilizer group:

Note: vertex operators pairwise commute and square to unity.
The code is defined on the subspace with                             .
Error syndrome: collection of ±1 eigenvalues.
X (bit-flip) and Z (phase) operators do not mix: study only bit flips.
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Bit-flip errors



Threshold: map to a statistical model

Error correction is achievable if:

                                             is a bit-flip error with probability p

              	

 	

 	

 	

 	

 	

 probability that a syndrome       was
 	

 	

 	

 	

 	

 	

 	

 	

 caused by an error in the homology
	

 	

 	

 	

 	

 	

 	

 	

 class    .

Mapping:
Nishimori line: 
              ; negative when           .
Insert classical spin variables              at the vertices to obtain:
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Bit-flip errors: random 3-body Ising model

Hamiltonian:

Details:
Ising spins S on the vertices 
of a 2D Union Jack lattice.
A bit-flip error corresponds to                 with probability p.
p > 0: glassy Ising model (3-body interactions).
Note: the Toric Code maps onto a 2D random-bond Ising model.

Error threshold:
Compute the p–Tc phase diagram of the model.
pc corresponds to the critical p along the Nishimori line where 
ferromagnetic order is lost.

τijk = −1

Dennis et al., J Math Phys (02)
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Interlude: Algorithms



Monte Carlo & the Metropolis algorithm

Downloaded 06 Oct 2007 to 129.132.208.24. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Standard Monte Carlo

• Goal: 	

 	

 Compute a thermodynamic average of an observable O:

• Problem: 	

 The number of states is exponentially large
	

 	

 	

 (N Ising spins              2N states).	



• Solution: 	

 Statistically sample a subset of smartly 
	

 	

 	

 chosen states but with a statistical error.

• Select the states according to      to obtain a Markov chain for

• Metropolis algorithm: accept new configuration 
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M is the number of trials.
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Why does simple Monte Carlo fail here?

The systems we are interested
in have rugged energy landscapes.
At low temperature, when 
is large

is “never” accepted.

How can we resolve the problem?
Tunnel trough barrier.
Heat up the system to overcome the barrier.

Paccept = min(1, e−∆E/T )

∆E
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Exchange (parallel tempering) Monte Carlo

Efficient algorithm to treat spin glasses at finite T.
Idea: 

Simulate M copies of the system at different 
temperatures with Tmax > Tc (typically Tmax ~2TcMF).
Allow swapping of neighboring temperatures: 
easy crossing of barriers. 

Extremely fast equilibration at low temperatures (~104).
Transition probabilities:
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see, e.g., Katzgraber et al., JSTAT (06)
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T [(Ei, Ti)→ (Ei+1, Ti+1)] = min {1, exp[∆Ei+1,i∆βi+1,i]}



Back to bit-flip errors… 



Probing criticality: correlation length
Cooper (82)• Study the finite-size two-point correlation function.

• Scaling behavior:
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Benchmark case: p = 0

The critical parameters 
can be computed exactly:

Tc = Tcising = 2.269… 
    
   

Agreement with 
exact results.

Next: Perform a finite-
size scaling of the data… 

ν = 3/4
α = 1/2
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Scaling with known exponents (p = 0)

Fixed parameters:
Tc = Tcising = 2.269… 
  

The finite-size
scaling is perfect.

Next: introduce 
errors by flipping bits

τijk → −τijk

ν = 3/4



Introduce qubit errors with p > 0

Tcising

T

p

For each value of p 
compute Tc. 
Corrections around
p ~ 0.108.
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p–T phase diagram & error threshold

54 CPU years later… 
Error threshold:

Note: pc does not violate 
the Gilbert-Varshamov 
bound p ~ 0.110027.
Same as Kitaev model 
and TCC on triangular
lattices.

pc = 0.109(2)

ferromagnet

paramagnet

error correction feasible

Phys. Rev. A 81, 012319 (2010)
Phys. Rev. Lett. 103, 090501 (2009)
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54 CPU years later… 
Error threshold:

Note: pc does not violate 
the Gilbert-Varshamov 
bound p ~ 0.110027.
Same as Kitaev model 
and TCC on triangular
lattices.

pc = 0.109(2)

ferromagnet

paramagnet

error correction feasible pc

Do wider computational capabilities 
imply a lower resistance to bit flips?

No!
Phys. Rev. A 81, 012319 (2010)
Phys. Rev. Lett. 103, 090501 (2009)



Measurement errors



Add measurement errors… 

bit-flip errors

error rate  

2D random model

3D lattice gauge theory
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3D disordered lattice gauge theory

2D random model

3D lattice gauge theory
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Order parameter

Problems:
Local order parameters (magnetization)
do not work for LGTs.
The transition is first order.
Both specific heat and energy imprecise.

Solution:
Wilson loops in the hexagon plane

Note: here we use minimal loops over 
one plaquette to reduce corrections.
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Average Wilson loop value (no errors)

Simulation Temperature T
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Average Wilson loop value (p = 3%)
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Average Wilson loop value (p = 3%)
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Wilson loop distribution (p = 3%)
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Skewness as a “Binder parameter”
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Error threshold with measurement errors

23 CPU years later… 
Extrapolate (           )…   
Threshold:

Revisit TC (pc = 3%)

See also:
Phys. Rev. Lett. 103, 090501 (2009)
Phys. Rev. A 81, 012319 (2010)
arXiv:quant-phys/1005.0777, PRL subm.
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Error threshold with measurement errors

23 CPU years later… 
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Are TCCs stable towards bit-flip and 
measurement errors?
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