From curiosity to agreement and back: Do clusters and CMB agree?

Nabila Aghanim (IAS, Orsay)

With Laura Salvati and Marian Douspis and the Planck Collaboration

Starting point: March 2013

After the Early release in 2011: Planck first cosmology results

 \rightarrow Cosmological parameters with Planck CMB and with SZ cluster counts show a 2.5 σ tension on $\sigma_{\rm Q}$ - $\Omega_{\rm m}$

- How did we get there?
- What are the updates?
- Tension or curiosity: Yes, No, Maybe

Cosmological parameters with cluster counts

Volume element & growth rate changed with cosmology \rightarrow number of peaks vary Evolution of Cluster counts \rightarrow constrain cosmological parameters: σ_8 , DM, DE, ... Since ~1990

Cosmological parameters with cluster counts

Compare the probability of observed cluster number counts with predictions from theory/model

$$\frac{dN}{dz} = \int d\Omega \int dM_{500} \hat{\chi}(z, M_{500}, l, b) \frac{dN}{dz dM_{500} d\Omega}$$

Theoretical mass function: number of DM halos from simulations Scaling relation: relating observable (SZ, X-ray, richness) to DM halo mass

Cosmological sample: constructed from the obervations Selection function: survey characteristics (noise, depth, ...)

Selection of the cosmological sample

X-ray selection → redshift dimming & over-representation of cool-core clusters SZ selection → no redshift dimming, quasi mass-selected

Planck & SPT/ACT: complementary → high mass intermediate z & higher-z lower mass

Inhomogeneous and scaledependent noise

→ Completeness depends on cluster detection-filter size and position on the sky

Cosmological sample: Compromise between large number of clusters (with z) and high purity

Scaling relation

Derive cluster mass from global observed quantities Use low scatter & unbiased mass proxies

- → Complex physics but simplified assumptions for mass determination:
- Hydrostatic equilibrium
- No pressure from relativistic particles, no magnetic fields, etc
- No multi-temperature structure
- X-rays: Strong dependence on non-gravitational physics → High scatter L_x-M relation & bias, M_x is a better proxy
- **SZ**: Weaker dependence → Low scatter Y₅₇-M relation ~unbiased selection

Scaling relation

Scaling with 71 clusters from cosmo sample with XMM-Newton data **rescaled with simulations**

 Y_{sz} measured in Planck & Y_{χ} measured from X-ray data

$$[Y_X \rightarrow M_X \text{ and } Y_X \rightarrow Y_{SZ}] \rightarrow Y_{SZ} - M_X$$

$$E^{-\beta}(z) \left[\frac{D_{\rm A}^2(z) \, \bar{Y}_{500}}{10^{-4} \, {\rm Mpc}^2} \right] = Y_* \left[\frac{h}{0.7} \right]^{-2+\alpha} \left[\frac{(1-b) \, M_{500}}{6 \times 10^{14} \, {\rm M}_{\rm sol}} \right]^{\alpha}$$

 $(1-b) = 0.8 \ in \ [0.7-1.0]$ Mass bias: ratio hydro to true mass from sims

Scaling relation

Weak lensing and Y_x -based mass estimates comparison, Y_x from X-ray Chandra data (Vikhlinin et al. '09)

$$[Y_X \rightarrow M_X \text{ and } Y_X \rightarrow Y_{SZ}] \rightarrow Y_{SZ} - M_X$$

Rescaled to WL

$$Y_{SZ} \propto M^{YX} = (1-b) M_{WL}$$
 Mass bias: ratio hydro to true mass

$$E^{-\beta}(z) \left[\frac{D_{\rm A}^2(z) \, \bar{Y}_{500}}{10^{-4} \, {\rm Mpc}^2} \right] = Y_* \left[\frac{h}{0.7} \right]^{-2+\alpha} \left[\frac{(1-b) \, M_{500}}{6 \times 10^{14} \, {\rm M}_{\rm sol}} \right]^{\alpha}$$

Lensing-based scaling relation

- WtG \rightarrow (1-b)~0.68 (von der Linden et al. '14)
- PSZ2LenS \rightarrow (1-b)~0.76 (Sereno et al. '17)
- CCCP \rightarrow (1-b)~0.78 (Hoekstra et al. '15)
- CMB lensing → (1-b)~1 (Planck collab. '16), (1-b)~0.7 (Zubeldia & Challinor '19)

Sample	$N_{ m Cl}$	z	σ_z	M_{500}	$\sigma_{M_{500}}$	$b_{ m SZ}$
PSZ2LenS	32	0.20	0.15	4.8	3.4	-0.27 ± 0.11
PSZ2LenS Cosmo	15	0.13	0.09	6.4	4.1	-0.40 ± 0.14
LC ² -single	135	0.24	0.14	7.8	4.8	-0.25 ± 0.04
CCCP	35	0.23	0.07	8.5	3.8	-0.22 ± 0.07
CLASH	13	0.37	0.13	11.3	3.3	-0.39 ± 0.08
LoCuSS	38	0.23	0.04	7.5	2.8	-0.18 ± 0.05
WtG	37	0.36	0.13	11.5	5.2	-0.43 ± 0.06

& many others

Planck 2013 Curiosity: Clusters vs CMB

0.88

0.84

0.80

0.76

SZ clusters B in [0.7-1]

CMB 2013

189 clusters (@S/N≥7) using scaling to X-rays

 n_s , Ω_b , Y*, α , S marginalised over (1-*b*) in [0.7-1] with mean 0.8

 \rightarrow Higher values of Ω_m , σ_8 from CMB

\sim 2.5 σ tension between CMB and SZ counts

How to reconcile clusters & CMB?

Increase σ_8 from clusters

Decrease σ_8 from CMB

Possible solutions are to change e.g.:

- Number of clusters (missing half massive low z clusters): increase cosmological sample
- Theoretical model: change mass function? Change scaling relation?
- Initial spectrum
- Change transfer function: include massive neutrinos

Planck 2015: Exploring the ingredients

Mass function

Mass bias parameter

Cosmological sample

Same "tension"

Reduced only if mass bias is low: close to the CMB preferred value

What about other cluster samples?

X-rays

SZ from SPT

 σ_8 - Ω_m from X-ray luminosity function of REFLEX-II Very different sample & selection function \rightarrow Agreement with Planck SZ cluster results (Planck Collab. '16)

 σ_{8} - Ω_{m} from 377 SPT clusters Lensing-priors from WtG on the scaling relation

$\sigma_{_{\! 8}}\text{-}\Omega_{_{\! m}}$ from SPT analyses:

- 18 clusters (14 with Chandra), Benson et al. '13
- 100 clusters, Reichard et al. '13
- 377 candidates (82 with Chandra) & lensing-prior on Xray scaling, de Haan et al. '16
- $\rightarrow \sigma_8$ - Ω_m central value changed by 10%

Updates & changes

Planck CMB 2013

polarisation from WMAP

Planck CMB 2015

Polarisation from LFI

Planck CMB 2016 & 2018

- Polarisation from HFI (inc. low l)
- \rightarrow better estimate of τ: **low reionisation optical depth** from $\tau = 0.89$ to $\tau \sim 0.05$

Planck SZ Clusters 2013

- 189 clusters
- slope Y-M from 71 clusters & amplitude from <12 sims>
- Mass bias (1-b) in [0.7-1], mean 0.8 <u>Planck SZ Clusters 2015</u>
- 439 clusters, dN(z,S/N)
- slope Y-M from 71 clusters & amplitude from lensing estimates
- Mass bias CCCP (1-b)~ 0.78±0.1

Revisited analysis: from curiosity to agreement?

Same SZ counts as Planck '16 Same prior on mass bias [CCCP lensing (1-b)=0.78] Sampling cosmology & scaling-relation parameters \rightarrow SZ constraints unchanged From WMAP prior on τ to Planck-HFI low-l polarisation \rightarrow reduced σ_{\circ}

Revisited analysis: from curiosity to agreement?

Extensions to LCDM (especially neutrinos) reduce slightly more the difference between CMB and cluster counts on σ_8 - Ω_m to below ~1.2 σ

No more tension but ...

Revisited analysis: from agreement back to curiosity?

Degeneracy between mass bias and σ_8

→ CMB & SZ are reconciled if (1-b) is low (~0.6) and σ_8 is high

$$\sigma_8 \ (\Omega_m/0.3)^{1/3} \sim 0.78 \pm 0.03$$
 SZ (Clusters+CI)+BAO $\sigma_8 \ (\Omega_m/0.3)^{1/3} \sim 0.84 \pm 0.02$ CMB+tSZ

CMB prefers low mass bias values

$$(1 - b) = 0.58 \pm 0.04 \rightarrow Planck '15$$

$$(1 - b) = 0.65 \pm 0.04 LCDM \rightarrow Salvati '18$$

$$(1 - b) = 0.63 \pm 0.04 DE \rightarrow Salvati '18$$

$$(1 - b) = 0.67 \pm 0.04 \text{ Neutrinos} \rightarrow \text{Salvati '18}$$

$$(1 - b) = 0.62 \pm 0.03 \rightarrow Planck '18$$

While SZ prefers higher values

$$(1 - b) = 0.75 \pm 0.10$$

From curiosity to tension?

... $(1 - b) \sim 0.6$ too low!

Low value of (1-b) implies low gas fraction in clusters \rightarrow rejected at \sim 4.4 σ

Mass bias of CMB vs estimates from WL and simulations

How to reconcile (bis): Is mass bias unique & constant?

Systematic study exploring: parametrisation in bins, proior on mass bias, selected sample, etc.

Do variations of mass bias improve more cosmological agreement? → **Not really** Do data suggest any bias variation? → mild redshift evolution depending on sample

Conclusions

- Cosmology from a few hundreds of SZ clusters with reduced τ :
 - → No tension on σ_8 - Ω_m between CMB and SZ counts (difference <2 σ with C_1^{SZ})
 - → Cluster constraints agree with lambda (w=-1.06) & set limit on neutrino mass to 0.18eV
 - → Analysis not limited by statistical errors but by systematics mostly mass bias calibration: @present (1-b) in [0.7, 1] to be reduced to a few %
- CMB prefers mass bias (1-b) in [0.6, 0.65]
 - → Curiosity compared to simulations & most of WL mass estimates & SZ
- Comparison with universal gas fraction implies that the most massive local clusters would be missing about a third of their baryons
 - \rightarrow (1-b)~0.6 from CMB rejected at~4.4 σ
- Higher resolution SZ map, CMB lensing, and high quality X-ray data should increase constraining power of C_l^{SZ} & improve mass estimates of large cluster samples

