Evolution of the Genetic Code

Supratim Sengupta Centre for Computational Biology & Bioinformatics Jawaharlal Nehru University, New Delhi, India.

KITP, Santa Barbara – Feb. 8, 2010

Major Transitions in Evolution

(Maynard-Smith & Szathmary)

- **Replicating molecules** \rightarrow Populations of molecules in compartments.
- Independent replicators \rightarrow Chromosomes.

RNA as genes and enzymes \rightarrow DNA & proteins – Development of the Genetic Code and its subsequent evolution.

- Prokaryotes \rightarrow Eukaryotes (chromosomes enclosed within nucleus)
- Asexual clones \rightarrow Sexual populations
- Single celled eukaryotes \rightarrow Multicellular organisms (fungi, plants, animals)
- Solitary individuals \rightarrow colonies (Division of labour and origin of cooperation)
 - Primate societies \rightarrow Human societies (evolution of the nervous system & origin of language).

Khorana, Holley, Nirenberg (Nobel 1968), Matthei, Crick

Number of Synonymous changes = 137

Number of Non–Synonymous Changes = 392

The Genetic Code provides a recipe for synthesis of proteins from DNA sequences.

Wobble Pairing : Pairing between <u>1'st anti-codon</u> position and <u>3'rd codon</u> position.

Allows greater pairing flexibility compared to pairing at other codon/anti-codon positions which strictly follow Watson-crick rules.

Khorana, Holley, Nirenberg (Nobel 1968), Matthei, Crick

Number of Synonymous changes = 137

Number of Non–Synonymous Changes = 392

The code is *not* universal.

Reassignments of one or more codons to a different amino acid have occurred in many separate groups of organisms.

Codon reassignments -> Alternative Genetic Codes

Total number of observed reassignments = 44 (mitochondrial + nuclear + bacterial)

11 *distinct* codon reassignments - mitochondrial genome.

- 4 distinct codon reassignments nuclear genome.
- **1** *distinct* codon reassignment bacteria

Implications of codon reassignment

Codon reassignment changes the amino acid sequence of *every* protein which uses the codon.

Knight *et al.* (2001) *Nature Reviews Genetics*

Nature Reviews | Genetics

Molecular Basis of Codon Reassignment

Example : AUA was reassigned from Ile to Met during the early evolution of the mitochondrial genome

	Before Change			After Change			
Amino Acid	lle		Met	lle	Met		
Codon	1AUU3	AUC 	AUA 	AUG 	1AUU3 AUC	AUA 	AUG
Anti-codon	3UAG1	UAG	UA ^{k2} C	UAC	3UAG1 UAG	UAf5C,U	UAf5C,U
Effect	Proteobacteria and some protist mitochondria possess an extra tRNA-Ile (^{k2} CAU) with a modified base that translates AUA only .			Loss of the <i>special</i> tRNA-Ile(^{k2} CAU) and Gain of function of the tRNA-Met so that it translates both AUA and AUG . UAU (Sea Squirts), ^{f5} CAU (insects).			

Temporal Ordering of occurrence of GAIN/LOSS events determine mechanism of change

LOSS before GAIN \neq GAIN before LOSS

Proposition: Codon reassignments involve a LOSS (i.e. deletion or loss of function of a tRNA or RF) and a GAIN (i.e. gain of a new tRNA or a gain of function of an existing one).

NO selective disadvantage if the codon disappears.

SS & P. Higgs, Genetics 170:831-840(2005)

The Gain-Loss framework allows for 4 distinct mechanisms of codon reassignment.

Codon Disappearance (CD) - Osawa & Jukes

Ambiguous Intermediate (AI) - Schultz & Yarus

Unassigned Intermediate (UI)

Compensatory Change (CC) – Code change occurs without fixation of the AI or UI state

Objectives of Modeling

- **D**oes the codon disappear from the genome during the intermediate stages?
- In the *absence* of codon disappearance, does the population pass through the ambiguous state or the unassigned state?
- Does the intermediate ambiguous or **unassigned** state get *fixed* in the population ?

Computational Model of a Population Undergoing Codon Reassignment

Part 1 – Coding sequence evolution

Calculating the fitness of an individual sequence in the population

- Ascertain the genetic code used by the individual sequence.
- Compare the translated mRNA sequence to the optimal protein sequence.

Assign factor (1-s) whenever there is a 'wrong' amino acid.

Eg.: AUGAUUCCCAAAGUAAUAGGGUAUAGACGA Fitness = (1-s)(1-s)

Individuals reproduce in proportion to their fitness

Computer Model of a Population Undergoing Codon Reassignment

Part 2 – tRNA genes controlling translation

Each individual has a LOSS gene and a GAIN gene with two alleles, 0 or 1. These genes represent tRNAs associated with one codon (e.g. AUA in the Ile \rightarrow Met case).

LOSS = 0 - the original tRNA is still present.

LOSS = 1 - the original tRNA has been deleted or is non-functional.

GAIN = 0 - the new tRNA is not present.

GAIN = 1 - the new tRNA has been acquired.

Block	Before	After		
AUN	$AUU > GAU$ {lle}	AUU > GAU {Ile}		
lle —> Met	AUA — K2CAU {Ile} AUG — CAU {Met}	AUA > f5C , U AU {Met}		

There are 4 types of individuals defined by the GAIN-LOSS combination.

Type 00 (old code) - fitness's calculated as in Part 1.

Type 11 (new code) - translation follows the modified genetic code.

Type 01 (unassigned codon) - Specify fitness factor $(1-s_{unas})$ wherever this codon appears.

Type 10 (ambiguous codon) - This will be wrongly translated half the time. Specify fitness $(1-s)^{1/2}$ when it appears at either the old or the new amino acid position.

Possible distribution of tRNA-types and individual sequences in a generation

<u>Sequence</u>	<u>Gain-Loss</u>	<u>Code Used</u>	Fitness Assignment for AUA
Seq-1	Type 00	Old Code	1 (Ile); (1-s) - otherwise
Seq-2	Type 01	Old Code	(1-s_unas)
Seq-3	Type 01	Old Code	(1-s_unas)
Seq-4	Type 10	Old Code	$(1-s)^{1/2}$
Seq-5	Type 11	New Code	1 (Met); (1-s) - otherwise
Seq-6	Type 01	Old Code	(1-s_unas)

Individuals begin in state 00. Alleles mutate from state 0 to 1 with a probability U_{gl} per individual per generation.

Simulations begin with all type 00 and end with all type 11. Type 01 and/or type 10 are present at intermediate stages.

Codon Disappearance (CD) [Osawa & Jukes]

A new tRNA acquires the ability to decode the codon E.g: Gain of function of tRNA-Met(UAU or ^{f5}CAU) Loss (deletion) of tRNA-Ile (^{k2}CAU)

On subsequent reappearance ,the AUA codon has a new meaning (amino acid) associated with it.

AUGAUACCUACAGGUCAAUAA

Translated as Met on reappearance

S.S & P.Higgs, Genetics 170:831-840(2005)

Evidence of codon reassignment via the *Codon Disappearance* mechanism.

fij is the *frequency* of individuals with tRNA **type ij**.

Parameters

N=1000; u=0.0001; s=s_stop=s_unas=0.05; #AUA=4. #AUG=4

Unassigned Intermediate Mechanism (UI)

tRNA decoding a codon is lost (Loss of function), codon becomes unassigned during a transient intermediate stage.

Eg.: Loss (deletion) of tRNA-Ile (^{k2}CAU) occurs first; AUA - unassigned

Translated as **Ile** by tRNA-Ile (**GAU**) but with *low* efficiency

A new tRNA acquires the ability to efficiently decode the codon.

Eg.: Gain of function of tRNA-Met(UAU or ^{f5}CAU)

Codon gets new meaning ; new genetic code results.

Eg.: AUA translated as Met

Evidence of Codon Reassignment initiated by the *Loss* of tRNA.

Parameters

N=1000; u=0.0001; s_unas=0.007; s=s_stop=0.02; #AUA=4.

Ambiguous Intermediate (AI) [Schultz & Yarus]

New tRNA acquires the ability to decode the codon.

Eg.: Gain of function of tRNA-Met(UAU or ^{f5}CAU)

Codon undergoing reassignment is translated as two distinct amino acids during a transient intermediate stage.

New code is established when one meaning is selected over the other.

Eg.: Loss (deletion) of tRNA-Ile (^{k2}CAU) ; ambiguity removed.

AUA uniquely translated as Met.

Evidence of codon reassignment occurring via the **Ambiguous Intermediate** mechanism.

36 **Ile** codons (including 12 AUA's) and 4 **Met's** were present in the original sequence.

Parameters

N=1000; u=0.0001; s_sense=s_stop=s_unas=0.01;#AUA=12.

Compensatory Change (Kimura)

Changes in the Gain-Loss gene used to represent the state of the tRNA

The selective disadvantage of the intermediate stage is compensated for by a subsequent mutation.

Evidence of codon reassignment occurring via the **Compensatory Change** mechanism.

Parameters

N=1000; u=0.0001; s_sense=s_stop=s_unas=0.05; #AUA=4.

Model Predictions

Ambiguous Intermediate mechanism seems more likely for reassignment involving sense codons.

Codon Disappearance mechanism could be more relevant for reassignment involving stop codons.

Reassignment initiated by **tRNA Loss** is likely in scenarios in which a codon can be translated by a near-cognate tRNA without substantial fitness cost.

Compensatory Change mechanism is more likely when penalty against ambiguous & unassigned states are large.

Knight *et al.* (2001) *Nature Reviews Genetics*

Nature Reviews | Genetics

Genomic Analysis of Changes in the Mitochondrial Genetic Code

SS, X. Yang & P. Higgs (J.Mol.Evol. 64:662-688 (2007))

Determine location of each codon reassignment on a phylogenetic tree.

Correlate location of codon reassignment with codon usage and tRNA types available for the specific codon(s) undergoing reassignment.

		UGA: Stop to Trp			
		Species	# UGA	tRNA-Trp	P _{dis=}
	C. merolae			anticodon	$(1-f_{UGA})^{N}$
100/100	C. crispus	C.merolae	2 (stop)	CCA	
	100/100	C.crispus	101 (Trp)	UCA	0.036
	P. purpurea	P.purpurea	117 (Trp)	UCA	0.0014

- UGA disappeared in the common ancestor of *C.crispus* and *P.purpurea*.
- Anticodon of tRNA-Trp mutated from CCA to UCA
 - UGA on reappearance is translated as Trp.

AUA: Ile to Met in Fungi

Reassignment initiated by deletion of $tRNA-Ile(^{k2}CAU)$

In K.Lactis & K. Thermotolerans AUA translated as **Ile** by tRNA-**Ile**(GAU)

Completed after gain of function of tRNA-Met(CAU)

AUA translated as Met

Predictions of Codon Reassignment Mechanisms in Mitochondria

Codon Reassignment	# of times	Mechanism
UAG: Stop \rightarrow Leu	2	CD
UAG: Stop \rightarrow Ala	1	CD
UGA: Stop \rightarrow Trp	12	CD
$\frac{\text{CUU/CUC/CUA/CUG: Leu}}{\text{Thr}}$	1	CD
$CGU/CGC/CGA/CGC: Arg \rightarrow Unassigned$	5	CD
AUA: IIe \rightarrow Met	5	UI
AAA: Lys \rightarrow Asn or Unassigned	3	AI
AGA/AGG: Arg \rightarrow Ser	1	UI
AGA/AGG: Ser \rightarrow Stop	1	AI
AGA/AGG: Ser \rightarrow Gly	1	AI
UUA: Leu \rightarrow Stop	1	UI/AI
UCA: Ser \rightarrow Stop	1	UI/AI

AI and UI mechanisms can only be *indirectly* inferred after ruling out the CD mechanism

For some reassignments, its *not* possible to determine whether the AI/UI mechanism was responsible.

Testing the viability of the AI & UI mechanisms in vitro

Translational Error correction *before* Peptide bond formation

(W. Wintermeyer, M. Rodnina, R. Green)

Source : Cochella & Green; Current Biology : 15 (2005); R536

Aminoacyl-tRNA's arrive at the ribosome in a ternary complex with GTPase EF-Tu and GTP.

A cognate ternary complex hydrolyzes with greater rate $(k_3 > k_{-2})$ than a non-cognate ternary complex

A non-cognate ternary complex is more likely to dissociate ($k_{-2} > k_3$) than hydrolyze.

A cognate ternary complex undergoes the peptidyl transfer reaction with greater rate $(k_5 > k_7)$ than a non-cognate ternary complex.

Conformational changes at the ribosome *and* in the cognate / non-cognate tRNA is induced by the pairing between the codon and anticodon and affects the peptidyl transfer reaction rate.

Such conformational changes increases the rejection rate $(k_7 > k_5)$ of a non-cognate ternary complex from the ribosome.

Testing the UI mechanism : Effect on Translation Rates

Produce a ribosomal nascent chain (RNC) complex

- Produce a ternary complex of EF-Tu-GTP-Ile-tRNA-Ile(GAU) for translating the AUA codon
- Determine the rates $(k_{-2}, k_{3}, k_{7}, k_{pep})$ of AUA codon recognition by the tRNA.

Translational Error Correction *after* Peptide bond formation

Zaher & Green; Nature 457 (2009) 161

Source : Fredrick & Ibba; Nature : 457 (2009); 157-158

The ribosomal complex becomes more susceptible to premature termination induced by RF2

→ The partial formed erroneous sequence is prematurely released and eventually degraded.

During *ambiguous* translation of AAA by tRNA-Asn(GUU) a "wrong" amino acid Asn can be inserted into the peptide chain ?

How viable is *ambiguous* translation of AAA by tRNA-Asn(GUU) and tRNA-Lys(UUU) ?

Retrospective Error Correction during Ambiguous Translation of AAA

Create two di-peptidyl-tRNA-ribosome complexes both of which carry a sense codon (AUC) at the A-site.

"Wrong" di-Peptidyl tRNA with amino acids Met-Asn when tRNA-Asn(GUU) is used to decode AAA Correct di-Peptidyl tRNA has amino acids Met-Lys when tRNA-Lys(UUU) is used to decode AAA

Determine if recognition of AAA by tRNA-Asn(GUU) leads to RF2 induced peptide release.

A comparison of the **differential** rates of translation by the tRNA-Asn(GUU) and tRNA-Lys(UUU) will determine the extent of ambiguous decoding AAA.

Conclusions

The Genetic Code is *still* evolving

The evolutionary pathways leading to codon reassignment can be deciphered

Codon Disappearance mechanism is responsible for all reassignments involving loss of stop codons.

Unassigned Intermediate and **Ambiguous Intermediate** mechanisms are mostly responsible for reassignments involving sense codons.

- *in vitro* experiments can be used to test the viability of AI & UI mechanisms.
- Open Question : tRNA import into mitochondria and its connection to codon reassignment
 - Understanding the tRNA import machinery and how it varies across organisms ?
 - When did the tRNA import machinery evolve and did it evolve independently multiple times ?
 - Why are some tRNA's imported and not others ?

Acknowledgements

Paul Higgs – Genetic Code evolution model, genomic analysis of codon reassignments.

Xiaoguang Yang - Genomic analysis of codon reassignments.

Ashutosh Vishwabandhu – codon reassignment in bacterial and nuclear genomes

Howsun Jow

Cendrine Hudelot

Vivek Gowrishankar

Magnus Rataray

Daniel Jameson

Bin Tang

Wei Xu

PHASE – PHylogenetics And Sequence Evolution package

- Database for mitochondrial genomes drake.physics.mcmaster.ca/ogre