RNA dynamics and Biomolecular Systems

Hervé Isambert, RNA dynamics and Biomolecular Systems Lab, Institut Curie, UMR 168, Paris.

I. RNA Dynamics

Alexandre Dawid Bastien Cayrol Cédrine Lemoine Alain Xayaphoummine

II. DNA Nanotechnology

Virgile Viasnoff Amit Meller, Rowland Institute, Harvard

III. Biological Networks

Kirill Evlampiev

Thomas Rolland

Marco Cosentino Lagomarsino

HFSP Foundation CNRS Institut Curie Ministère de la Recherche

Thomas Buchert Veronique Arluison, IBPC, Paris Harald Putzer, IBPC, Paris Irit Sagi, Weizmann

RNA Folding Path Simulations

including Pseudoknots and Knots

Harlepp et al., EPJE (2003) Xayaphoummine et al., PNAS (2003) Xayaphoummine et al., NAR (2005)

Online RNA folding server http://kinefold.curie.fr > 21,000 online simulations so far

DNA / RNA Folding / Unfolding Kinetics

k+ is <u>slow</u> compare to typical molecular time scales, local heat diffusion, etc \longrightarrow DNA switch under folding kinetics control

k+ is fast compare to transcription rate < 1 base/ms \longrightarrow RNA switch under co-transcriptional folding control

k- can be <u>arbitrary slow</u> \longrightarrow long-lived out-of-equilibrium folds

Modeling RNA Folding Kinetics

by following the *stochastic* formation and dissociation of *entire* helices

At each configuration along the folding path:

- calculate *all* rates : $k_i = k^0 \exp(-\Delta G_i / kT)$
- choose *one transition* stochastically :

$$\mathbf{k}_{1} \qquad \mathbf{k}_{2} \neq \mathbf{k}_{3}$$

$$\mathbf{k}_{i} \qquad \mathbf{k}_{i} \qquad \mathbf{k}_{i}$$

• Efficient speed–up using ''Exactly Clustered Stochastic Simulations'' PNAS 100, 15310 (2003)

PNAS 97, 6515 (2000)

Modeling RNA Secondary Structures

Pseudoknot Prevalence in RNA Structures

PNAS, 100, 15310 (2003)

Encoding Folding Paths of RNA Switches

under Antisense Regulation

Viasnoff et al., NanoLett. (2006) Xayaphoummine et al., NAR (2007)

Dawid, Cayrol, Arluison

Riboswitches (metabolite-induced conformational change)

(Post)-transcriptional regulation through RNA switch control

combine : antisense interaction + structural switching

Transcription-guided vs equilibrium folding

Example of simple RNA switch design

(both structures have equivalent energy here)

Encoded and regulated folding paths of RNA switches

Constitutive coupling between RNA synthesis and folding regulation

Exploring the principles of RNA-based regulation networks

In vitro/in vivo RNA-based networks

Evolution of Large Biological Networks under General Duplication–Divergence Models

Evlampiev & Isambert, arxiv.org/abs/q-bio.MN/0606036 Evlampiev & Isambert, arxiv.org/abs/q-bio.MN/0611070

Genome size distribution

what was known before sequencing

5 decades (8 including viruses)

Even multimodal distribution within some species families

Sparrow 1976

Ten Years of Genome Sequencing: few genes... same genes...

Tetraodon 22,000

Arabidopsis 29,000

Wheat 75,000 ?

(allohexaploid)

Human 20,000–25,000

Paramecium 39,000

-> Evolution through Duplication-Divergence of Genes and Genomes

Combinatorial Gene Expression

Detailed interaction logic (AND/OR/NOT)

PPI Networks: Properties

N number of nodes, L number of links
 N_k number of nodes with k neighbours
 p_k degree distribution, <k> mean degree

$$p_k = \frac{N_k}{N}, \langle k \rangle = \sum_{k \ge 1} k p_k = \frac{2L}{N}$$

• p_k is a **local** caracteristics <k>=3.93, α between 2 and 3 $p_k \propto \frac{1}{k^{\alpha}}, k \gg 1$

• g(k) average connectivity of neighbours

$$g(k) = \sum_{(n:d_n=k)} \sum_{in:n} \frac{N_i}{kN_k}$$

the simplest non local distribution

Mechanisms of Genome Evolution

 Random mutations (nucleotide substitutions) synonymous (the same aminoacid) nonsynonymous (a different aminoacid) nonsense codon modifications (Stop)

 Recombinations – crossing over/gene conversion exchange of homologous sequences between homologous chromosomes non reciprocal exchange (loss of one of the variant sequences)

- Deletions and Insertions unequal crossing over gene deletion and local gene duplication —> shuffling of protein domains
- Global gene duplication whole genome duplication replication of chromosomes without segregation

Long suspected... recently proved!

Mechanisms of Genome Evolution

Random mutations (nucleotide substitutions)

synonymous (the same aminoacid) nonsynonymous (a different aminoacid) nonsense codon modifications (Stop)

- Recombinations crossing over/gene conversion
 exchange of homologous sequences between homologous chromosomes
 non reciprocal exchange (loss of one of the variant sequences)
- Deletions and Insertions unequal crossing over gene deletion and local gene duplication —> shuffling of protein domains
- Global gene duplication whole genome duplication replication of chromosomes without segregation

Recently proved!!!

Implies important genetic modifications!!

Whole Genome Duplication in Yeast Genome Kellis et al. 2004

Whole Genome Duplication in Yeast Genome Kellis et al. 2004

Whole Genome Duplications in Evolution

Whole Genome Duplications promote:

-Shuffling of protein domains

Whole Genome Duplications in Evolution

Whole Genome Duplications promote:

-Shuffling of protein domains

Yeast 6000 genes : 4000 in PPI network

500 duplicates from WGD: 250 with both duplicates in available PPI network

Yeast 6000 genes : 4000 in PPI network

500 duplicates from WGD: 250 with both duplicates in available PPI network

Yeast 6000 genes : 4000 in PPI network

500 duplicates from WGD: 250 with both duplicates in available PPI network

Yeast 6000 genes : 4000 in PPI network

500 duplicates from WGD: 250 with both duplicates in available PPI network

Yeast 6000 genes : 4000 in PPI network

500 duplicates from WGD: 250 with both duplicates in available PPI network

Node pair distribution with shared partners 10.0 90-91 90-91 distribution degree distributions WGD dupli random Node degree WGD dupli pairs random pairs 10 Number of shared partners

Node degree

Proba to share k+ partners : k=1 WGD dupli > 20 x random pairs k=10 WGD dupli > 1,000 x random pairs

Yeast 6000 genes : 4000 in PPI network

500 duplicates from WGD: 250 with both duplicates in available PPI network

Proba to share k+ partners : k=1 WGD dupli > 20 x random pairs k=10 WGD dupli > 1,000 x random pairs
Evolution of PPI Networks

Evolution of Protein-Protein Interaction Networks reflects evolution at the level of Genome

random mutations, local gene duplications, global gene duplications

→ Different models of PPI Network Evolution

- local → evolution by local gene duplication-divergence process Ispolatov, Krapivsky, Yuryev, *Phys. Rev. E* **71**, 061911 (2005)
 - → Barabasi-Albert like models (preferential attachment) Barabasi, Albert, *Science* **286** 509-512 (1999)
- global→ evolution by whole genome duplicationEvlampiev, Isambert q-bio.MN/0606036

global+local → general duplication-divergence model Evlampiev, Isambert q-bio.MN/06011070 time–linear growth

exponential

growth

Evolution of PPI Networks

Evolution of Protein-Protein Interaction Networks reflects evolution at the level of Genome

random mutations, local gene duplications, global gene duplications

→ Different models of PPI Network Evolution

local → evolution by local gene duplication-divergence process Ispolatov, Krapivsky, Yuryev, Phys. Rev. E 71, 061911 (2005)

- → Barabasi-Albert like models (preferential attachment) Barabasi, Albert, *Science* **286** 509-512 (1999)
- global \rightarrow evolution by whole genome duplication Evlampiev, Isambert q-bio.MN/0606036

global+local → general duplication-divergence model Evlampiev, Isambert q-bio.MN/06011070 time-linear growth

exponential

growth

GDD Model of PPI Network Evolution

GDD Model of PPI Network Evolution

Exponential Dynamics of Genome and PPI Network Evolution

Node Degree Growth Rate $\Gamma_i = (1-q)\gamma_{is} + q(\gamma_{io} + \gamma_{in})$

Network Link Growth Rate $\Gamma = (1-q)\Gamma_s + q\Gamma_0 + q\Gamma_0$

 $\Gamma > 1$ Growing Network $\Gamma < 1$ Vanishing Network

Network Conservation (M) and Expansion (Γ)

Network Conservation (M) and Expansion (Γ)

Asymptotic Topology of PPI Networks

Asymptotic Topology of PPI Networks

Duplication–Divergence Models Including Self–links

Self-links do not affect evolutionary regimes (just exponents)

Network Conservation (M) and Topology (M')

Generating Function Formalism

Kirill Evlampiev

• At each step generating function of number of nodes

$$F^{(n)}(x) = \sum_{k \ge 0} \langle N_k^{(n)} \rangle x^k$$

For two consecutive steps

$$F^{(n+1)}(x) = (1-q) F^{(n)}(A_s(x)) + qF^{(n)}(A_o(x)) + qF^{(n)}(A_n(x)),$$

$$A_i(x) = (1-q)(\delta_{is} + \gamma_{is}x) + q(\delta_{io} + \gamma_{io}x)(\delta_{in} + \gamma_{in}x), \ \delta_{ij} = 1 - \gamma_{ij}, \ \Gamma_i = A'_i(1)$$

Generating Function Formalism

The real degree distribution and its generating function

$$p_{k}^{(n)} = \frac{\langle N_{k}^{(n)} \rangle}{\langle N^{(n)} \rangle}, k \ge 1$$
 $p^{(n)}(x) = \sum_{k \ge 1} p_{k}^{(n)} x^{k} - 1$

Network's dynamics (get rid of k=0)

$$p^{(n+1)}(x) = \frac{(1-q) p^{(n)}(A_s(x)) + q p^{(n)}(A_o(x)) + q p^{(n)}(A_n(x))}{\Delta^{(n)}}$$

$$\Delta^{(n)} = \frac{\langle N^{(n+1)} \rangle}{\langle N^{(n)} \rangle} = -(1-q) p^{(n)}(A_s(0)) - q p^{(n)}(A_o(0)) - q p^{(n)}(A_n(0))$$

Stationary solution? $\lim_{n \to \infty} p^{(n)}(x) = p(x) \longrightarrow$ functional equation on p(x)

It can be analysed using asymptotic methods

$$p(x) = 1 - A_1(1-x) + A_2(1-x)^2 + \ldots + A_{\alpha}(1-x)^{\alpha} + o((1-x)^{\alpha}), \quad x \to 1$$

Statistical Properties of the Model

- Network evolution is described in terms of ensemble averages <Q>
- This description is meaningfull since fluctuations are not large

distribution function of *L*

$$oldsymbol{P}^{(n)}(L) {\sim} rac{1}{\langle L^{(n)}
angle} oldsymbol{F} iggl[rac{L}{\langle L^{(n)}
angle} iggr]$$

the pth moment is proportional to the pth power of the first one!

- Due to N_k≤N≤2L in <u>linear regimes</u> <N>~<L> Exp & Scale Free this holds also for distributions of N and N_k
- For nonlinear regime this probably holds too (numerical simulations)

Distribution of Network Sizes

Redefining PPI Networks as Domain Interaction Networks

Redefining PPI Networks as Domain Interaction Networks

- - Multidomain proteins (random shuffling)

Redefining PPI Networks as Domain Interaction Networks

>

Adding some "combinatorial logic" through multidomain proteins

Comparison with Yeast Direct Interaction Data

A two-parameter Whole Genome Duplication Model with Random Protein Domain Shuffling $\gamma_{on}~\lambda$

 $\gamma_{on} = 0.1$ ($\gamma_{oo} = 1$ $\gamma_{nn} = 0$) λ =1.5 prot. bind. domains per protein

Average Connectivity of Neighbours

Comparison with Yeast Direct Interaction Data

A two-parameter Whole Genome Duplication Model with Random Protein Domain Shuffling $\gamma_{on}~\lambda$

$$\gamma_{on} = 0.1$$
 ($\gamma_{oo} = 1$ $\gamma_{nn} = 0$)
 $\lambda = 1.5$ prot. bind. domains per protein

PPI Network growth rate $\Gamma = \Gamma_{o} + \Gamma_{n} = 1 + 2 \gamma_{on} = 20\%$

Seasquirt–Human (2WGD): 25% Seasquirt–Fugu (3WGD): 11%

Average Connectivity of Neighbours

Comparison with Yeast Direct + Indirect Interaction Data

A two-parameter Whole Genome Duplication Model with Random Protein Domain Shuffling $\gamma_{on}~\lambda$

Topology of direct interaction network

$$\gamma_{on} = 0.1$$
 ($\gamma_{oo} = 1$ $\gamma_{nn} = 0$)
 $\lambda = 1.5$ prot. bind. domains per protein

Topology of direct & indirect interaction network

Comparison with Yeast Direct Interaction Data

Fit of Yeast Data with a one-parameter WGD Model $\gamma_{on}=0.26$ ($\gamma_{oo}=1$ $\gamma_{nn}=0$)

Hierarchy and Feedback in the Evolution

gyrA

of Bacterial Transcription Networks

 Cosentino-Lagomarsino, Jona, Bassetti & Isambert,

 arxiv.org/abs/q.bio/0701035,
 PNAS (2007), in press

 fliLMNOPOR
 flgBCDEFGHIJK
 flbBAE
 fliE
 flgMN
 fliC
 fliDST
 motABcheAW
 tar

300 sequenced genomes

300 sequenced genomes

300 sequenced genomes

Replication pressure on bacterial genome evolution

Yersinia pseudotuberculosis versus Yersinia pestis

Transcription in Bacteria

Hierarchy with few Transcriptional Layers

Transcription Factor Families

Babu et al., NAR 2006

TF Family Expansion by Duplication

Babu et al., NAR 2006

Duplication and layers

Classes of nodes tend to occupy the same layer: "lateral" growth.

Shuffling of links between TFs exists but preserves layer structure.

Evolutionary Decoupling of Duplicated ARs

Evolutionary Decoupling of Duplicated ARs

