Syracuse University

Towards Third-Generation Gravitational-Wave Detectors

Duncan Brown

on behalf of the Cosmic Explorer Team

Gravitational-wave astronomy is in full swing with second-generation detectors: Advanced LIGO and Virgo

Three kilometer-scale detectors operational

LIGO Livingston ~ 130 Mpc

LIGO Hanford

Virgo

~ 50 Mpc

~110 Mpc

KAGRA

Underground facility

Cryogenic sapphire test masses

Locking full interferometer this summer

Goal to join at the end of the O3 run

Current and near-future network

Advanced LIGO

Early and Mid: 01 and 02

13 BBH mergers

1 BNS merger

Abbott et al. (arXiv:1811.12907) Venumadhav et al. (arXiv:1904.07214)

Late: 03

Design: 04+

Detection every day!

GW170817 has ruled out the stiffest equations of state, but not yet detected tidal deformability

Post-merger signals undetectable by 2G

What 2G Detectors Can See

- GW merger events in the local universe
 - Black hole mergers (z ≤ 2) Neutron star mergers (z ≤ 0.1)
- Most of the universe is still out-of-reach
 - At design at most O(1000) / yr detections per year
 - BBH mergers: O(100 000) / yr in the universe
- Detected events relatively noisy: signal-to-noise ratio O(10)

What limits Advanced LIGO?

Reducing Quantum Noise

- Shot noise and radiation pressure form the standard quantum limit
- Higher power in the arms decreases shot noise but increases radiation pressure
- Larger mirrors react less to impulses
- Squeezing can help one (or both using an extra cavity!)

Vacuum squeezing now in use

LIGO Livingston in O3

BNS range increases from ~125 Mpc to ~140 Mpc

Barsotti/aLIGO

Near-term upgrades: A+ & AdVirgo+

- Five year time scale: modest improvements to aLIGO and AdVirgo
 - Better mirror coatings, frequency dependent squeezing, heavier test masses*, suspension modifications*, Newtonian noise subtraction*
 - *AdVirgo+ only
 - 5x rate improvement for binary neutron stars
- KAGRA upgrades also on the horizon

What about Voyager?

What about Voyager?

- LIGO Laboratory has not yet converged on a post a+ timeline for the 4 km facilities
- Should Voyager be installed:
 - ...as soon as the technology is ready?
 - ...or when the disruption to the global network will be minimal?
- Hinges on several unknowns:
 - When will Voyager technology be ready?
 - Which detectors will be online after 2025 and with what sensitivity?
 - How many facilities would be upgraded to Voyager?
 - Is a funding available that would not significantly delay Cosmic Explorer?

Einstein Telescope

Cosmic Explorer

Binary mergers throughout cosmic time

Early warning for BNS mergers

What 3G Detectors Can See

- Observe every binary black hole merger in the universe
- Direct detection of BBH at high redshift
- Precision exploration of cold dense matter in neutron stars
- Behavior of hot dense matter in post-merger signatures
- High-fidelity detections, finding the "odd ball" mergers
- Precision tests of General Relativity, possible exploration of new physics

Supernovae in 3G

70 kpc at SNR 8

95 kpc at SNR 8

c.f. DUNE

"4G" may get 1 Mpc

Einstein Telescope

- 2011 conceptual design, 10x range of advanced detectors, ~1B Euro cost
- Facility: 10.3km-long tunnels, 25m high vertex rooms, 100-200m underground, 20+year lifetime
- Three nested detectors, each with two interferometers
- Triangle geometry: equal sensitivity for both polarizations and more isotopic sensitivity

Xylophone Configuration

- ET-HF (30-10000Hz):
 - 200kg fused silica optics at room temperature
 - 3MW 1064nm light and phase squeezing
- ET-LF (1.5-30Hz)
 - 211kg silicon mirrors at 10K
 - 16kW 1550nm light and amplitude squeezing
 - Superattenuators

Cosmic Explorer

- Facility: 40km L-shaped detector on Earth's surface
- One interferometer in faculty
- 14cm wide laser beams, 2 MW laser
- R&D progress needed in optical coatings, quantum noise, thermal compensation
 - Year ~ 2030 and ~ 1B USD

CE1 and CE2: two-stage approach

	CE1	CE2
	2030s,	2040s,
	à la aLIGO	à la Voyager
Wavelength	1.0 µm	1.5 to $2.0\mu m$
Temp.	293 K	123 K
Material	glass	silicon
Mass	$320\mathrm{kg}$	
Coating	silica/tantala	silica/aSi
Spot size	12 cm	14 to 16 cm
Suspension	1.2 m fibers	1.2 m ribbons
Arm power	1.4 MW	2.0 to 2.3 MW
Squeezing	6 dB	10 dB

ET and CE are complimentary

- 1 x ET + 2 x CE would be awesome, but expensive
- Community is exploring the scientific benefits of various network configurations
- Other possible detectors:
 - OzGrav High Frequency Interferometer currently in conceptual design
 - Ignoring low-frequency simplifies things a lot, but still lots of physics

Multi-band with LISA

Facility Challenges

- Building a new facility requires ~ \$1 billion with current technology
 - Earth moving, tunnelling.
 - Vacuum construction, beam-tube bake out
- Possible cost savings with novel vacuum systems or serendipitous sites

Example location: Bonneville Salt Flats, Utah, USA

Potential 40 km sites in US

Low Frequency is Hard

- Lots of noise sources:
 - Control noises
 - Geophysical noises
 - Scattered light
 - Mystery noises
- Ambitious goals:
 - aLIGO 10Hz, CE 5Hz, ET 3 Hz

Reducing Mirror Motion

- Suspend mirrors from multiple pendulums
- Apply multiple-stage active isolation and tiered control
- Reduce wind and surface waves through building shape or depth
- Cancel gravity noise by sensing it with seismometer array

Virgo

High Power and Strong Squeezing

- Highest power demonstrated so far ~ 250 kW (aLIGO)
- 3G power requirements: 3 MW
 - 10x power increase
- Best squeezing demonstrated: 6 dB (GEO600)
- 3G requirement: 10 dB
 - 3x optical loss reduction

New Materials and New Wavelengths

- Most detector experience is with room-temperature glass and 1064 nm lasers
- Need to develop familiarity with cryogenic suspended sapphire or silicon
- Need high-power lasers, high-efficiency photodetectors, etc. at new wavelengths
- Need large pieces of high-quality silicon for core optics

Where are we now?

GWIC 3G White Papers

- Coordination via Gravitational Wave International Committee
 - Cosmology and early Universe arXiv:1903.09260
 - Extreme gravity and fundamental physics arXiv:1903.09221
 - Black hole binaries arXiv:1903.09220
 - Multimessenger observations of neutron star binaries arXiv:1903.09277
 - Multimessenger observations of supernovae and isolated neutron stars (magnetars, pulsars, ...) arXiv:1903.09224
- Science book coming soon

Einstein Telescope

- European-led effort
- Design study 2008-2011
- Site studies in Limburg and Sardinia
- Maastricht Pathfinder Experiment (starting 7/2019)
 - Cryogenics
 - New wavelength
- Large-mass cryogenic prototyping at Virgo

Cosmic Explorer

- US-funded effort
- Horizontal design study funded by NSF
 - MIT (Evans, Vitale), Syracuse (Ballmer, Brown), Caltech (Adhikari, Chen),
 Fullerton (Lovelace, Read, Smith), Penn State (Sathyaprakash)
 - Collaborating with LIGO Lab on Astro2020 APC White Paper
 - Deliverable is Cosmic Explorer White Paper for community
- NSF-sponsored workshop on large ultra-high vacuum systems
 - https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=P1900072

The US MREFC Process

Towards Cosmic Explorer

- Horizon planning (3G Design NSF award in 2018) leading to Cosmic Explorer White Paper (3 years)
- Community endorses the CE White Paper (0.5 years)
- NRC report based on CE White Paper and GWIC reports (1.5 years?)
- NSF MPS Advisory Committee subcommittee reviews NRC report (0.5 years)
 - Physics Division develops written plan for MPS approval
 - NSF Director makes a decision to authorize Conceptual Design funding
- Conceptual Design period (2-3 years)
- Preliminary Design period (2-3 years)
- NSF approves submission to NSB (0.5 years)
- Final Design period (2-3 years)
 - NSB prioritization
 - OMB/Congress budget negotiations
- Congress appropriates MREFC funding (2030-35) Total 12-15 years

Timeline of a Cosmic Explorer 40km Observatory

2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040 2042 2044 2046 Year

Einstein Telescope

Engaging the Community

- Investing in a 3G detector is a big undertaking for the science community
- Need input beyond from beyond the existing gravitational-wave community
- US Cosmic Explorer team currently discussing how to get input from wider community... we would like to get something set up soon!
 - LISA-like lightweight science consortium?

Conclusion

- Current detectors see the local universe
- Terrestrial detectors that see the entire universe are within reach
- Planning for third-generation detectors is underway