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Direct measurement of the luminosity distance
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Direct measurement of the luminosity distance

Luminosity Distance < 1/Amplitude
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-Mass, sky location, and binary
orientation also affect the amplitude,
however these parameters can either

be determined independently or
marginalized out.




Direct measurement of the luminosity distance

Luminosity Distance~<1/Amplitude

-Constrain the cosmological parameters
with the redshift and luminosity distance:

z dZ/
o H(2')

Dy :C(l—l—Z)

H(z) = Ho\/QM(l +2)3 + Qp(1 + 2)2 + Qp(1 + 2)30+wotwa) g—3waz/(1+2)
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Different methods for gravitational-wave cosmology
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Determine the redshift of gravitational-wave source

with the host galaxy [“Standard Siren”]
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Determine the redshift of gravitational-wave source

with the host galaxy [“Standard Siren”]
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Counterpart method:
Find the host galaxy of the electromagnetic counterpart.
Schutz, Nature, 1986 / Holz & Hughes, ApJ, 2005



The first standard siren measurement
with an electromagnetic counterpart

GW170817 GW170817
DECam observation DECam observation
(0.5-1.5 days post merger) (>14 days post merger)

Soares-Santos, ~, Chen+, ApJL, 2017
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The first standard siren measurement

with an electromagnetic counterpart

GW170817
DECam observation

GW170817
DECam observation

(0.5-1.5 days post merger) (>14 days post merger)

From electromagnetic:

VUV = 3017:

From LIGO-

- 166 km/s.

v 2.9
Dy = 4315 Mpc

Soares-Santos, ~, Chen+, ApJL, 2017




The first standard siren measurement
with an electromagnetic counterpart

GW1708 J————
Planck!’
SHoES1!8

Ho = 70+1% km/s/Mpc

90 100 110 120 130 140

Ho kms™Mec™ - Abbott et al. (2017)
Soares-Santos, ~, Chen+, ApJL, 2017
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2% Hubble constant measurement within five years

| Projected Year:
12019 2022

Chen, Fishbach, Holz , Nature, 2018




7
2% Hubble constant measurement within five years

| Projected Year:
12019 2022

Chen, Fishbach, Holz , Nature, 2018




Chen, Fishbach, Holz , Nature, 2018

2% in five years

- Realistic distance posteriors were used.
Chen & Holz (2016) / Chen et al. (2018)



Chen, Fishbach, Holz , Nature, 2018

2% in five years

- Realistic distance posteriors were used.
Chen & Holz (2016) / Chen et al. (2018)

- 200 km/s peculiar velocities.
— BNSs at 40-80 Mpc give smallest HO uncertainty.



Chen, Fishbach, Holz , Nature, 2018

2% in five years

- Realistic distance posteriors were used.
Chen & Holz (2016) / Chen et al. (2018)

- 200 km/s peculiar velocities.
— BNSs at 40-80 Mpc give smallest HO uncertainty.

- 50% duty cycle for 3 detectors, 30% duty
cycle for 5 detectors.

— 5190425z (no EM counterpart)-like events were not included.



Chen, Fishbach, Holz , Nature, 2018

2% in five years

Realistic distance posteriors were used.
Chen & Holz (2016) / Chen et al. (2018)

- 200 km/s peculiar velocities.
— BNSs at 40-80 Mpc give smallest HO uncertainty.

- 50% duty cycle for 3 detectors, 30% duty
cycle for 5 detectors.

— 5190425z (no EM counterpart)-like events were not included.

- BNS astrophysical rate is the major source of
the uncertainty.
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2% Hubble constant measurement within five years

| Projected Year:
12019 2022

Chen, Fishbach, Holz , Nature, 2018
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Different methods for gravitational-wave cosmology
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Determine the redshift of gravitational-wave source

with the host galaxy [“Standard Siren”]

B

Statistical method: Schutz, Nature, 1986/ Del Pozzo,PRD, 2011 -1 ©©O

Combine the redshifts of all possible host galaxies.
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Determine the redshift of gravitational-wave source

with the host galaxy [“Standard Siren”]
Singer, Chen+, ApJL, 2016
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Combine the redshifts of all possible host galaxies.



o o o . 11
Determine the redshift of gravitational-wave source

with the host galaxy [“Standard Siren”]
‘ Singer, Chen+, ApJL, 2016

B

Statistical method: Schutz, Nature, 1986/ Del Pozzo,PRD, 2011 LIGO

Combine the redshifts of all possible host galaxies.

-GW170814: Hy = 75.273) 3 km /s /Mpc

(Dark Energy Survey Year 3 data)
DES & LVC, 2019

-GW170817: Hy = 76728 km /s/Mpc
Fishbach, ~Chen et al., ApJL, 2019
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Finding the electromagnetic counterpart is critical

=== BNS with counterpart 10-10M, BBH w/o counterpart
Y BNS w/o counterpart -y 30-30M, BBH w/o counterpart

Without
Counterpart

Projected Year: \Imnterpart

2019 2022 2023 2025 2026

Chen, Fishbach, Holz , Nature, 2018



Chen et al., Nature, 2018

Statistical Method

- Most of the BBHs can not be localized well.

— They do not contribute to the HO measurement.

- Complete galaxy catalog was assumed.

— This is not true for most of the cases.
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Improve the Hy measurement precision:

Break the distance-inclination degeneracy

Face-on binary Edge-on binary
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Improve the Hyp measurement precision:

Break the distance-inclination degeneracy

Face-on binary Edge-on binary

arge Distance =
;[ LIGO

Small
Distance L'GO
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Improve the Hp measurement precision:

Break the distance-inclination degeneracy

-Neutron star mergers with viewing angles constrained by
electromagnetic emission.

Can be viewed
as
HO uncertainty

200 400 600 800
Simulated event index

Chen, Vitale, Narayan, 2018
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Improve the Hp measurement precision:

Break the distance-inclination degeneracy

-Neutron star mergers with viewing angles constrained by
electromagnetic emission.

Can be viewed
as
HO uncertainty

800

A factor of 5 to10 fewer events are required to reach the same
Hubble Constant precision if the viewing angle is constrained.
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How well can GW detectors constrain the
viewing angle?

-HLV at design sensitivity. O3 is ~10% worse. Five detectors at design
sensitivity is ~10% better.
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How well can GW detectors constrain the
viewing angle?

-HLV at design sensitivity. O3 is ~10% worse. Five detectors at design
sensitivity is ~10% better.
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Redshift measurement makes a factor of ~3 difference.
Chen, Vitale, Narayan, 2018



What is special about
neutron star-black hole merger?

-Electromagnetic and neutrino emissions could be powered by

tidal disruption of the neutron star and the resulting accretion
disk.

18
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-At 2G design sensitivity the average detectable redshift is ~0.1
(10-1.4 Mo ). The measurement of redshift is less affected by
peculiar velocity and other local velocity fields.
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What is special about
neutron star-black hole merger?

-Electromagnetic and neutrino emissions could be powered by
tidal disruption of the neutron star and the resulting accretion

disk.

-At 2G design sensitivity the average detectable redshift is ~0.1
(10-1.4 Mo ). The measurement of redshift is less affected by
peculiar velocity and other local velocity fields.

-The distance-inclination degeneracy can be broken by the
observation of merger-ringdown and precession.



Improve the Hp measurement precision:

Break the distance-inclination degeneracy

Vitale & Chen, PRL, 2018

Can be viewed
as —>
HO uncertainty

40 60 80 100 120 140 160 180
Inclination [° ]

The difference between BNS and NSBH is mainly due to the observation
of merger-ringdown.
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Improve the Hp measurement precision:

Break the distance-inclination degeneracy

Vitale & Chen, PRL, 2018

Can be viewed Withoqt
as -> Precession
HO uncertainty
With
Precession

60 80 100 120 140 160
Inclination [° ]
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Improve the Hp measurement precision:

Break the distance-inclination degeneracy

Vitale & Chen, PRL, 2018

m— BNS m— g, =0.89, 7=0°
m— g, =0.5, 7=0° - = a; =089, 7=60°
- = a;=0.5, 7=60° a; =0.89, 7=90°

Can be viewed Withoqt
as -> Precession
HO uncertainty
With
Precession

80 100 120 140 160 180
Inclination [° ]

A large and misaligned black hole spins results in a significant waveform
amplitude modulation, which entirely breaks the degeneracy.



19
Improve the Hp measurement precision:

Break the distance-inclination degeneracy

Vitale & Chen, PRL, 2018

m— BNS m— g, =0.89, 7=0°
m— g, =0.5, 7=0° - = a; =089, 7=60°
- = a;=0.5, 7=60° a; =0.89, 7=90°

Can be viewed Withoqt
as -> Precession
HO uncertainty
With
Precession

80 100 120 140 160 180
Inclination [° ]

NSBHs can provide more precise Hubble Constant measurement if its
astrophysical rate is larger than 1/10 of binary neutron star mergers.
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What has not been discussed?

Systematics error of gravitational wave distance measurement
- Calibration errors, waveform

Electromagnetic observation selection effects

- Mass, spin

-Viewing angle

Beyond 2G, beyond Hyp

LVC+1M2H+DECam+DLT40+Las Cumbres+VINROUGE+MASTER , Nature (2017)
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Summary

-Gravitational waves can serve as an independent probe to the
Universe. The Hubble constant uncertainty is expected to
reduce to two percent in five years.

-In addition to capturing the EM counterpart, we also need to
address various possible systematics and selection effects
carefully to ensure an accurate HO measurement.



