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Motivation

The fuzzball conjecture offers a promising approach to the black hole information
paradox

So far, only geometries for two-charge microstates have been found. These
geometries have classically vanishing horizon area.

Want to find geometries that could be microstates for three-charge black holes
and the new black ring solutions, which have classically finite horizons.

Want to find geometries that could be microstates for four-dimensional black holes
Connect the old picture of D-brane state counting with the new fuzzball picture




Outline

1. The fuzzball hypothesis

2. The Bena-Warner ansatz

3. Solving the equations for a three-charge system and global
constraints




The fuzzball hypothesis

e In the usual black hole picture we have a horizon, empty space and
all interesting physics concentrated at the singularity




The fuzzball hypothesis

e In the usual black hole picture we have a horizon, empty space and
all interesting physics concentrated at the singularity

e In the fuzzball, the region between the “horizon” and the singularity




More on fuzzballs

e Each microstate looks the same asymptotically. Closer in we see
differences

e Our three-charge solutions will replace a core region of singular
brane sources with a geometric transition to a bubbling foam of

two-cycles threaded by flux

e The intricate geometry of these cycles will distinguish individual




The Bena-Warner ansatz

e We utilize an ansatz due to Bena-Warner for 3-charge, 1/8 BPS solutions in 5D

e The setup is M-theory on a 7° with 3 stacks of M2-branes wrapped on each
2-cycle. These will induce M5-brane dipole charge

e The 5D space is time fibred over a hyperkahler base space, HK

ds?, = —(Z12225) 2 (dt + k)? + (Z12225) /2 ds% . + dse,

ds2s = (Z12225)"° (Z;l(dzf + d22) + 2, N(d22 + d22) + 25 N(d2E + dzg)) .

ds®, = H ‘o> + H(dr’ +r°df° + r’sin’ 8d¢”),




Bena-Warner ansatz continued

Define G* = da’. The BW ansatz solves the EOM if

Gi — *Gi,
d*de = QSijij/\Gk,




Solving the EOM

e We can solve the EOM using 8 harmonic functions (r, = |£ — z,|, ¢ = 1...3)
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e Notice that the poles of each harmonic function overlap, this is necessary for the
solution to be smooth




Solving the EOM

e We can solve the EOM using 8 harmonic functions (r, = |£ — z,|, ¢ = 1...3)

N
_ZE
p=1 "

e Notice that the poles of each harmonic function overlap, this is necessary for the

solution to be smooth
e With these harmonic functions we can solve for all quantities relevant for the

SUGRA solution




Constraints

e For our solutions to be smooth, the various charges in the harmonic functions
cannot all be independent

e To ensure smoothness we must have

1k 142 33 ;
Q; = _Sijkd%dp bp = s h=-> =, s= > d,
‘ 2n, 16n2 ~ 4 . te

e We must also insure that d*(k,dz") = 0. To display this condition, its easiest to

use the new variables
2 7
i i i . Hi(npdq — nqdp)




Zeros of the Z;

e To avoid singularities we need the determinant of the metric and its inverse to be
well defined and non-vanishing

V=91 = (Z12:25)"° H /g3

e We see that to avoid singularities we need Z; # 0. Our simple tactic for enforcing
this is to everywhere demand
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CTCs

e To exclude CTCs in our 5D reduced space we require our spacetime to be stably
causal

e For a spacetime to be stably causal it must admit a globally defined, smooth
function whose gradient is everywhere timelike. We call this a time function

e Our candidate function is simply the coordinate ¢, which is a time function if

— " 0ut0t = —g" = (222:25) " H' ((Z12225)H — HKE — gitskaks )

>0
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Asymptotic charges

e By looking at the asymptotic behavior of the metric and C-field we can read off the
expressions for the total membrane charge and SU (2); x SU(2)x angular
momenta

N N

12 : I\ } : 1y243

Qi = —5 npsijk)\;)\p, JR = npAp)\p)\p,
p=1 p=1
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General features

e The geometry is characterized by a set of regular 2-cycles S,,, coming from the
fiber o over each interval from z,, to z,,. The bubble equation tells us how these
bubbles can be arranged based on the flux through them.

e All brane sources have vanished and been replaced by flux on cycles =
geometric transition

e A generic microstate will have a large number of poles. The geometry will be a
foam of 2-cycles with an overall expected size of the representative black hole
horizon (this needs to be worked out!)
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Summary of conditions

e Our solution is completely parameterized by a set of poles on R? with quantized
residues n, and quantized fluxes djg

e These and the quantities that depend on them must satisfy the following
conditions for us to have a smooth (up to orbifold points) and regular solution free
of CTCs and horizons to 11D SUGRA with three membrane charges and 4
supersymmetries:

N
N qu
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Reduction to lIA

e We can reduce to 4D along the 7 direction by placing the geometry in Taub-Nut

(this insures we have a finite circle at infinity). We do this by adding a constant to
H

H — H+6H, 6H =4/L* L = g.l,

e We can also add constants to the 7 other harmonic functions (6 M;, 6h', § K), not




15

The reduction

Defining dimesionless harmonic functions and new radial coordinate p = 2r /L
My=—-HL?/4, K°=4K/L, K'=1Lh'

the reduction gives (ds§ IS now in the conventional form)

=1

dsira = —J° (dt + kada®)” + Ji/z(dsg + (—Zz'Mo)_ldeZFi)

1
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The reduction cont.

e J, is the quartic invariant of 77

Ji = MK (M;K") + M1 K" (MyK” + MsK®) + MoK*M;K*®

1
_ Z(1\@1{‘%)2 — MoM,M>,M; — K°K'K*K®,  a€0...3
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Asymptotic charges

We now have a solution of IIA in 4 non-compact directions with 0, 2, 4, 6-brane
charges. We can read off the angular momentum and quantized charges

1 .
J = §| E , qurpq|7
D,q
L l 1 d’ d* 4G, V;
D6 } : gsts D2 PP 4 Va
= — — = N . . = —— ISEY: = — N .
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Reduction to 4D and special geometry

e We can further reduce to 4D and obtain solutions to ' = 8 SUGRA

e This theory has an E77) duality group. The three D2-brane charges and the
D6-brane charge transform in an electric 28 of the maximal compact subgroup
SU(8)/Z,. The three D4-brane charges and the DO-brane transform in the
magnetic 28. Together they transform in the 56 of E )

e We can write a charge vector

Fp = (Qg, ?:, Qg, Q;), = Z Fp — (QO) Qi; Qoa QZ)
p
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Which black holes?

e These solutions are candidate microstates for 4D black holes. The area of the
associated black hole is

A = 2my/ Ju(T)

e Writing this in terms of the charges
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More on BPSness

e For the black hole solution J, () falls off like p~* at a pole since the metric goes
like

Ji/QdPQ, J4 = MOZ1Z2Z3

Zi=1+&, M0=1+@

p p
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More on BPSness

e For the black hole solution J, () falls off like p~* at a pole since the metric goes
like

Ji/de2, J4 = M()ZlZQZg
Z¢=1+%, M0=1+@
p p

e This is typical of 1/8-BPS solutions with finite area. As we turn off charges the
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The new bubble equation and a scaling relation

e The reduction alters the bubble equation. It becomes

2 e

7 1 7 1 P 2 7
%Jrf P_pq:O’ ¢p=anAp_L2n2an>\p, Ap=— —L"0oh
7 P g

q

e This equation has a novel scaling behavior. If we scale all coordinates by
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The new bubble equation and a scaling relation

e The reduction alters the bubble equation. It becomes

2 qu 7 1 7 7 d;) 2 7
D | R I

e This equation has a novel scaling behavior. If we scale all coordinates by

(t, p, 2") — a(t, p, z") the bubble equation remains invariant. This corresponds
: 1, 1/3711
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The open string picture and quivers (in progress!)

e We see that as we reduce g, the branes will get closer together.
When they are within a string length the open string picture

becomes the more valid description. The open string picture is given
by a quiver theory.

e The quiver is given as follows. Each individual charge vector I,
(atom) gives a U(1) factor. If I, = N,I', is still appropriately
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Quiver transitions

e When the open string picture is first valid, the system is described
by a quiver gauge theory in the Coulomb phase. The chiral multiplet
scalars are massive with masses proportional to the brane
separation

e As we further lower g, the scalars would become tachyonic. This
moves our quiver theory onto the Higgs branch
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The picture and quantum mechanics

e Flipping the picture around we find that going from zero to strong
coupling takes us on the path: D-brane vacuum state — quiver
theory in Higgs phase — quiver theory in Coulomb phase — 10D
BPS particles (wrapped branes) — 11D spacetime foam

e Quantum mechanically, we will have a wave function that is peaked
in different phases depending on g, the transitions should be
smooth
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Summing up

We have demonstrated a solution generating technique for general U (1)
invariant, BPS, three-charge microstates and shown how to reduce them to 4D

These solutions replaced a singular core region with an intricate geometry of
two-cycles threaded by electric and magnetic flux

After reduction the solutions are interpreted as D-branes in IIA
These solutions are candidate microstates for 4D, finite area black holes

We demonstrated a novel scaling behavior and conjectured a relation to D-brane
ground states
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Open questions

Can all microstates be written in terms of 1/2-BPS atoms?

How do we invert our conditions so that we can find and count all microstates for
given conserved charges?

What are the dual CFT states? How can the CFT encode our microscopic
variables?

What are the relations to the OSV conjecture on the black hole partition function
and topological strings?

he solutions organize themselves nicely with the




