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Motivation

A lot has recently been conjectured about de Sitter space and
inflation in quantum gravity

Can quantum information ideas put a bound on the lifetime of de
Sitter space and inflation?

Black holes are often considered the harmonic oscillator of
quantum gravity. They are fast scramblers

The similarity between a BH horizon & the cosmological horizon
has led to conjecture that dS is also a fast scrambler.
We found interesting similarities & differences

Recent studies of quantum chaos for BHs have offered a window
iInto their microscopic description. We computed out-of-time-order
correlators (OTOCs) to assess the chaotic nature of dS horizon
and explore consequences for dS complementarity & inflation.



Quantum Chaos

- The exponential blueshift in energy between an asymptotic and a free-

falling observer is key in making black holes chaotic.
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f = inverse temperature of BH

- A probe of chaos in quantum systems is the double commutator:

C(t) = (—=[V(0), WR)") =2 = 2(V(O)W()V(0)W(¢)) = 2 — 2F(¢)

V and W are Hermitian, unitary operators; F(t) is the out-of-time-order
correlator (OTOC). Chaotic behavior manifests in an exponential
growth of C(t) or equivalently, an exponential decay of F(t).



Quantum Chaos for Black Holes

In some thermal systems with a large # of dof N, e.g., holographic
CFTs dual to black holes

Fit)=1- %em +O(N7?), (B/2r <t < A7 log(N))

- The timescale when F(t) drops by an order 1 amount is known as

the scrambling time:
t, = A\ ' log(N)

- The (quantum) Lyapunov exponent A. determines how fast chaos
can grow and it has been argued to obey a universal bound:
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Black holes saturate this bound; they are fast scramblers



Quantum Chaos for de Sitter Space

- There is similarly a blueshift in energy between an observer at the
center of the static patch and a free-falling one through its horizon.

Like In the BH case, a perturbation released a scrambling time
before the t=0 slice is highly boosted, creating a shockwave.

-+ This led to conjecture that dS is also a fast scrambler.

But as we’ll see, there are at least two interesting differences:

Geodesics crossing a positive-energy shockwave (generated by
matter satisfying NEC) experience a gravitational time advance
rather than a time delay.

Possible to send signals from otherwise .
. . Alice o
causally disconnected regions ’




Quantum Chaos for de Sitter Space

Another difference is the absence of a spatially asymptotic and
non-gravitating boundary theory to probe the static patch.

Nonetheless, we can study chaos by restricting to a single static
observer. We calculated various OTOCs with operators inserted at
the origin of different static patches to establish the chaotic
behavior of dS & show that A_ saturates the chaos bound.

- We found that the OTOC does not decay in the same way as that

for BHs but behaves as

F(t) ~1— N2zt

- We then comment on the implications to de Sitter complementarity

and the constraints on de Sitter and inflation.



de Sitter Space

We carried out our analysis for de Sitter space, but it is
straightforward to generalize our results to inflationary spacetimes.

dSq can be described as a hyperboloid embedded into d+1
dimensional Minkowski space using embedding coordinates:

UABXAXB = (°
In static coordinates, time translational symmetry is manifest:

ds® = — (1 —r*/0) dt* + (1 — T2/€2)_1 dr® 4+ r2dQ;_,

where X" =02 —r2sinh(t/0) ,
X% =+/12 —r2cosh(t/l)
X' =ryt .

This metric only covers 1/4 of the global dS Penrose diagram,
known as the static patch, surrounded by the horizon at r=L.



de Sitter Space

By complexifying the time coordinates tx=1t + | €x, we can cover
the 4 static patches of global dS space:

T 7
er=0, €, =—ml, eT:—§€, 63258
uy = 2
I | |
In Kruskal-like coordinates
\a_t/ 1
B that provide a global cover:
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Wightman Function

2-point function of scalar fields in a particular vacuum state |Q):

Wiz, y) = (Qfp(x)e(y) [€2)

- The scalar field is described by the action:
S = /ddxr( Lo +mPo® + ERY?)

For states 1Q)) that preserve dS isometries, W(x,y) depends only on:

1

EUABXA(«T)XB(?J)

For the Bunch-Davies vacuum:

Z(f,y) —

I'(h)T'(ho) d 14 Z(x,y)
VV(Qj y) Zd(47r)d/2r(d/2) 241 (h+ h, 2 2 )
where h, — % (d 1+ Jd_12 = 4527%2) m2 = m? +£ER



Wightman Function

- The distinction between the real and imaginary regimes of h.:

. ~ (d—1)?
Complementary series (h: real) 0 < ml* < =

Principal series (h:complex) 202 > @

- W(x,y) is analytic everywhere in the complex Z plane except at a
branch cut along the line Z = 1, the correct ie prescription:

I'(h )I'(ho) d 1+ Z(x,y) + tesgn(z,y)
Wie.y) = ((4m)PT(d)2) > <h+’ ) 2 )

where sgn (X,y) = +1 if X is in the future of y and sgn (x,y) =-1if x is
In the past of y



Shockwaves

Consider the R patch: the relation between static & global coords.:

u:—ée_t/ﬂ/g_r : vzﬁet/ew/g_r
{4+ {47

Time translationt — t + ¢ corresponds to a boost in Kruskal coords

u— ey v — ety

A particle released from the origin of the static patch in the past is highly
blueshifted when it crosses the t=0 slice: shockwave geometry.

A shockwave traveling at the past horizon v=0 is given by the metric:

4 2 2
ds* = it (—dudv) — 4ad(v)dv* + 2 (g il uv) dop*

(02 — uv)? (2 — uv

We focus on 2+1 dim though it is easy to generalize our results to higher-
dim. dS shockwave geometries which are known



Shockwaves

- This is a solution to Einstein’s equations with a stress tensor:

@7
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- The NEC enforces a« > 0, and thus geodesics crossing the past
horizon at v=0 experiences a time advance by an amount «.

If this shockwave is generated by a particle with a thermal energy in
its rest frame Eo =B-'= 1/(2ml), a is given by the blueshifted energy

G
_ _Netw/e

o= t = —1y (time particle released)

Useful to consider the coord. transformed (u = ii — af(v)) metric:

2 404 i (EA (= ab)) S
B = @@ (o) (e2—<a—ae<v>>v> 4%



Shockwaves

- A positive energy shockwave generates a discontinuity in the metric by an

amount « that brings the L and R patch into causal contact.

uy = £*

uy = — £?
h
>y S
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Q
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=
I

uy = £2

- The shockwave is generated by an operator W(t) with t < 0. For inflation

applications, we can think of it as the flux of inflaton energy exiting the horizon.



OTOC in the Geodesic Approximation

- We computed the OTOC that was previously studied in the context

of black holes

F(t) = (Wr(t)VL(0)VR(0)Wr(?))

- WR and V_Rr are operators inserted at the origin of a static patch

indicated by the subscript; we can also view this as a purely right-
sided correlator by evaluating V. (0) = VR (-irl).

-+ We first evaluate this OTOC in the geodesic approximation, valid

when V corresponds to inserting a massive field with mi >> 1.

F(t) is the 2-point function in the shockwave background, given by
the sum of geodesics with the location of V at the endpoints:

Fiy= > ™ with cos(D @’y)):Z(x,y)

geodesics l



OTOC in the Geodesic Approximation

Caution: F(t) is only defined for geometries with a real analytic
continuation. Shockwaves introduce non-analyticities in the metric.

Adding the geodesic distances D+ and Do:

Vi(0)

Vr(0)

Wi(®)

D = D{ + Dy = f arccos (%) + ¢ arccos (a ; u)

Extremizing D over u gives u= a/2

In the geodesic approximation, the OTOC behaves as:

F(OJ) _ 6—2m€arccos(2%)

2
> 1+ mSNetw/g + O <%et“’/€)

R4



OTOC in the Geodesic Approximation

The expansion is valid for: ¢, < &. = ¢ log (42/Gy)

We recognize the upper bound as the scrambling time:

4
t.=7C1logS with S=——>1
2G

The OTOC does not decay but grows exponentially: A positive
shockwave causally connects the L and R patches and so V. and

VR are only spacelike when a < 21.

Above t., F(t) picks up an imaginary part and starts to oscillate:

F(tw)

4000 -

) 2000 -

Re(F(ty,)) = 4+ cos (2m€

Gy tw [l
alrccos (4—€ e

Im(F(t,)) = —sin (2m€ 17

G
arccos (—Net“’/ 6)

)

-2000 [

-4000 -

— Re[F(ty)]
Im(F(tw)]



Beyond the Geodesic Approximation

- This OTOC does not display chaotic behavior; not a surprise as

positive energy shockwaves in dS make V. & Vr more correlated.

- The oscillatory behavior of F(t) follows from that of the Wightman

function which oscillates for massive fields in the principal series
reps. (in the geodesic approximation, ml >> 1).

For light fields (complementary series reps.), the Wightman function
doesn’t oscillate. We expect qualitative different behavior of the OTOC.

- We computed the OTOC beyond the geodesic approximation,

focussing on conformally coupled scalars (for analytic expressions, and
also to illustrate the non-oscillatory behavior):

m22 = 3/4

- The OTOC displays chaotic behavior; the oscillations are absent and

the imaginary part of OTOC has a nice interpretation in terms of info
exchange between different static patches.



Beyond the Geodesic Approximation

The OTOC for BHs was computed beyond the geodesic
approximation in as an overlap between:

U) = Vr(ts)Wi(ts) [TFD) , |U') = Wr(ts) VL (t1)" |TFD)

In an elastic Eikonal approximation,

(Var (81) Wy (82) Vary (3) W, (24)) / D=V [p ) s(pY, )] [P (03, ') tha(ph, )]

For dS space, the result can be adopted with some modifications:

P (pY, ) = /dve%pu” <V(u,v,az)Vx1(t1)T>’u:0 :

" (W (1, v, )W (£2)1)] (... ) are Wightman functions

" in the BD vacuum instead of AdS

w2<pv7$) :/
Us(p", ) = / dve®™™ (V (u, v, ) Vi (£3))] g bulk-to-boundary propagators



Beyond the Geodesic Approximation

- The Wightman function greatly simplifies for m?¢* = 3/4

1 1

W(z,y) = 12037 /1 — Z(a,y) — iesgn(z, y)

- The Eikonal phase is given by the classical action:

! 1
huuD2hvv huuTuu hvam) — —— 1GNP DY PN/
167Gy " i TGN Ep"p" cos(¢” — &)

5:%/d3wfg[

- The OTOC can be solved analytically in terms of special functions:

F(t) = g (mHo(29) + 2F(9%) + 2log (—g) Jo(29))

with Struve function Hn(z), Bessel function of the 1st kind Jn(z),

7= o ()

T

€ — (eiei/f L e’iej'/f) (t) B 86513613€§4€—t/l 013 =41 for 0 <arg(ez)— 5 <7,
1] Y o 7TGN ? 013 =—1 for 7 <arg (513) — g < 291 .




Chaotic Behavior

- To compare with the geodesic approximation, we send one of the V

operators to the L patch. The OTOC as a function of t:

F(t)

1.0

03| — RelF(1)

Im[F(t)]

-0.5

- The real part of the OTOC initially rises but at later times decreases

and goes to zero.



Traversability

- A geodesic crossing a positive null energy shockwave in dS

experiences a time advance: it is possible to send signals
between the L and R patches. To confirm traversability, consider:

(e r O (VR (0)W () ()
(W OVa(0)W (1)) + 2er In( (VL (OW () Va(O)W (1)) + O(eh)

- The imaginary part of the OTOC is thus indicative of a signal

being exchanged between the L and R patches.

-+ de Sitter space share similarities with traversable wormholes in

AdS except that
there is no need for a non-local coupling between the poles.



de Sitter as a Fast Scrambler

- We can also consider the purely right-sided OTOC:

F(t)

1.0

0.8

Expanding for Ig(t)l > 1

_ GNT 1/0 2 GN /e 4
F(t)=1 (8€€ + O €

0.6
0.4
0.2

. | t
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For | <t < [ log(S), this OTOC decreases exponentially. The
Lyapunov exponent AL = 2rt/[3 saturates the chaos bound.

- The scrambling time is [ log(S) but the first order term in the
expansion of F(t) goes as 1/52 (for BHs, this term goes as 1/S).



Stringy Corrections

Because of the blueshift experienced by the perturbations, one might
wonder if stringy effects can modify the OTOC.

For BHs in AdS, such stringy effects were argued to be mild
. They increase the scrambling time due to the soft UV
behavior of string amplitudes.

5 (1+d(d+1)£§

In dS, the mass of the higher-spin states satisfy the Higuchi bound, in
order to fall into unitary reps. of the isometry group:

m*0? > (J —1)(d—4+J)

- Alinear Regge trajectory (mls)2 = J violates this bound for Jx(1/Is)2. The

higher-spin states can Reggeize the amplitude up to the Planck scale if
H <ms2/Mp. The soft UV behavior may increase the scrambling time.




Black Hole Complementarity

For black holes, observer complementarity
suggests that the infalling and asymptotic
observer have a different but “complementary” experience.

The scrambling time is just long enough to avoid a naive violation
of no-cloning



de Sitter Complementarity

Positive energy perturbations in dS open up a wormhole
connecting different static patches:

Alice Bob

l

w

Complementarity suggests that Bob can access at most Sqs
states. If Bob applied the perturbation that opens the wormhole at
early enough time tw, could Alice send as much info as she likes?



Information Exchange

The proper time during which the wormhole is open:

2
AT = 2t VAuAr =2a ~ Gy

0?2 — yv

In Alice’s frame, this time is blueshifted to A7 ~ Gye'*/*

Complementarity suggests that N < Sgs.
What goes wrong if Alice tries to send more bits?

For the message to not backreact too strongly, the total energy:
1

tot
< —
p G

The wormhole is open for a Planckian time so the signal has to be

sufficiently blueshifted to fit through:

y>1 1
P AT «



Information Exchange

If Alice tries to send > O(1) bits to Bob, her message either does
not fit through the wormhole, or backreacts too strongly.

Alice Bob

If she tries to send her message with K species of fields, she can
at most send Sgs bits to Bob, while satisfying the 2 conditions and
the species bound K = I/Gn.



Implications to Inflation

It has recently been conjectured that trans-Planckian guantum
fluctuations should remain quantum
, as a result the lifetime of (quasi) dS:

1 MP
T <—Ilog
H H

It was remarked that this bound is similar to the scrambling time.

Whether this Trans-Planckian Censorship Conjecture is true, the
scrambling time is a longer time (double the # of e-folds):

I 1 M3
Tscmmblmg Hlog SdS4 — E log H2

Our result also gives an interpretation of the scrambling time in an
inflationary setting.



Implications to Inflation

As the Hubble scale varies, the energy flux leaving the horizon is
given by the thermodynamics relation dE = TdS

€ H

E=— where €= — —
Gy H?

For simplicity, take € = constant, the energy that leaves the horizon
in one Hubble time 1/H is E= € (GnH)

This can be described as a positive energy shockwave if E = H, or

H2
€ >
87ng

Info can enter a Hubble patch from a previously disconnected
region after Ne = log Sas due to the shockwaves. If O(1) bit of info
enters per e-fold, backreaction may become important when Ne =
log Sas for single field and Ne = Sgs for maximum allowed # fields.



Implications to Inflation

As the Hubble scale varies, the energy flux leaving the horizon is
given by the thermodynamics relation dE = TdS

€ H

E=— where €= — —
Gy H?

For simplicity, take € = constant, the energy that leaves the horizon
in one Hubble time 1/H is E= € (GnH)

This can be described as a positive energy shockwave if E = H, or

H2
1> €2
8wM
Info can enter a Hubble patch from a previously disconnected
region after Ne =log Sqds due to the shockwaves. If O(1) bit of info

enters per e-fold, backreaction may become important when Ne =
log Sas for single field and Ne = Sgs for maximum allowed # fields.



Summary

Perturbations in de Sitter that satisfy the NEC result in a shockwave
geometry leading to a time advance for the geodesics crossing it.

This time advance brings different static patches of dS into causal
contact, much like a traversable wormhole in AdS.

We computed OTOCs to assess the chaotic nature of the dS horizon;
dS space is a fast scrambler but with differences from BHSs.

We discussed consequences of our results for dS complementarity
and the implications to inflation.

Other quantum informatic considerations may put a bound on inflation
and the subsequent dark energy phase



