Standard Model Measurements @ LHC Startup

Meenakshi Narain
Brown University
Representing the ATLAS and CMS collaborations.

June 2-6, 2008
Anticipating Physics at the LHC, KITP, Santa Barbara

A New Energy Domain

- The kinematic
 acceptance of the
 LHC detectors
 allows to probe a
 new range of x and
 Q²
- Q² up to ~10⁸
- x down to ~10⁻⁶

Importance of SM measurements

Test Higgs Sector

- $-m_{H}$
- <160 GeV @ 95% C.L.
- <190 GeV incl. LEP-2 limit
- Top Quark Properties
 - how is its mass generated?
 - topcolor?
 - does it couple to new physics?
 - massive G, heavy Z', H⁺, ...
- Background for potential discoveries

Cross Sections

Cross Sections

Cross Sections

First Measurements: $(J/\Psi, Y, Z) \rightarrow \mu\mu$

- Statistics for 1pb⁻¹(3.85days) @ 10³¹
- assuming a 30% detector+machine efficiency

After selection 600 Z→µµ per pb⁻¹

- Use the resonances to perform:
 - sanity checks
 - tracker alignment and momentum scale
 - detector efficiencies, trigger performance,
 - uncertainties on the magnetic field (distorted B field)

Alignment with Z→µµ

Tracker alignment

studies:

Electroweak Measurements

W and Z production

- W/Z rates at the LHC (LO):
 - σ(W→ ℓ v) ~ 16.8nb → ~10⁶ events in \int L dt = 100 pb⁻¹
 - σ(Z→ℓℓ) ~ 1.65nb \rightarrow ~10⁵ events in ∫L dt = 100 pb⁻¹
- Various measurements will be performed at a kinematic region different than earlier experiments.
- Measurements of EW observables
 - W,Z cross sections
 - W mass and width, sin2 θ_{eff}, A_{FB} from Z events
 - W charge asymmetry A(ηI)
 - Di-Boson productions
 - Measurement of triple gauge couplings
- Single W/Z boson production is a clean processes with large cross section useful also for
 - "Standard candles" for detector calibration /understanding
 - constrain PDFs looking at σ_{TOT} , W rapidity, ...
 - Luminosity measurement

W & Z cross section

- Data driven bkg determination a la Tevatron

 Shape of of W→ www.svosts 5 events
- Experimental systematics(1%) from
 - Efficiency extraction, momentum scale, misalignment, magnetic field, collision point uncertainty, underlying events, (pileup)
- Theoretical uncertainties (2%) arising from
 - PDF choice, initial state radiation, p_T effects (LO to NLO), rel. acceptance determination
- Luminosity measurement limited to 10%

$$\frac{\Delta\sigma}{\sigma}(pp \to Z/\gamma^* + X \to \mu\mu)$$

$$= 0.004 \text{ (stat)} \pm 0.011 \text{ (ex.sys)} \pm 0.02 \text{(th.sys)} \pm 0.1 \text{(lumi)} \text{ (CMS)}$$

High-Mass Lepton pair Production

- Important benchmark process
- Deviations from SM cross section indicates new physics
- With 100 pb⁻¹ @ 14 TeV, range probed > 800 GeV

m(μμ) GeV

High-Mass Lepton pair Production

 Parton level MC@NLO variations with QCD scales and PDF errors (CTEQ6)

Systematic error

High-Mass Lepton pair Production

- •EW corrections beyond NLO
 - •(Baur PRD75, 2007)
- •Effect of including $O(\alpha)$ correction (solid) & Real V=W, Z radiation (dashed).
- •NLO corrections decrease the LO distribution by
 - -7% @ 1 TeV and -20% @4TeV

Issues:

- While the total cross-sections don't teach us much about how to constrain the theory; the effects that hinder our high-mass predictions are also playing here.
- Specifically, the acceptance uncertainties (not knowing how many events are outside the y, M, p_T(I) windows we select) should be improved.
- Thus important to analyse the shapes: $d\sigma/dy$, $d\sigma/dp_T$, $d\sigma/dM$.
 - Z events are better than W in this respect (fully measured).
 - Since the Z decay is well known, the acceptance uncertainty on differential cross-sections is small.
- Improvement on the theoretical description then comes from:
 - Confronting data and theory within the analysed (y,pT,M) domain
 - Better extrapolation outside the analysed domain

Di-boson production

- Probes non abelian SU(2)xU(1) structure of SM
- Trilinear gauge boson couplings measured directly from ZW, WW, ZZ cross section
 - Charged TGC: WWZ, WWγ→ exist in SM
 - study WW and WZ/γ final states
 - Neutral TGC: ZZZ, ZZγ, Zγγ → do not exist in SM
 - study ZZ/γ final states
- Probing TGC is at the core of testing SM: values are O(0.001)

s-channel suppressed by O(10⁻⁴)

ZZ, WZ, WW

Di-boson production for $\int \mathcal{L} dt = 1$ fb⁻¹.

Channel	# events	bkgs	S/√B
ZW	75.7	ZZ→4ℓ, Z+jet,	30.1
		Zγ, DY	
WW	358.7	DY, Z+jet, tt,	18.9
		ZW, Zγ, ZZ, W	
		+jet	
ZZ	13	Nearly bkg free,	0 bkg
		Zγ, tt, Zbb	events

Signal Significance

1fb⁻¹:

 $ZZ \rightarrow 4e$: 7.1 signal and 0.4 background Q 14 WZ $\rightarrow 3l$: 97 signal and 2.3 background Q 12 Q 12

5 σ observation with:

ZZ : ~1 fb⁻¹

WZ:~150 pb-1

$$S_L = \sqrt{2 \ln Q}, \qquad Q = \left(1 + \frac{N_S}{N_B}\right)^{N_S + N_B} e^{-N_S}$$

Triple gauge boson couplings

•No tree level neutral couplings in SM

$$h_{1,3}, f_{4,5}, h_{2,4}$$

$$grows \sim \widehat{s}^{\frac{3}{2}} \quad grows \sim \widehat{s}^{\frac{5}{2}}$$

- Variables sensitive to modification to TGC structure from BSM effects
 - Cross section
 - Boson p_T(V=W, Z, γ)Production angle
- Anomalous coupling
 - enhancement of X-section at high Pt (g- and λ -type couplings)
 - changes in η and angular distributions (κ-type coupling

TGC

• λ_Z , $\Delta \kappa_V$, λ_V : maximum likelihood fit to 1-d P_T (V) distribution

• $\Delta \kappa_z$, Δg_{1z} : fit to 2-d distr. of $P_T(Z)$ vs. $P_T(I_W)$

• TGC limits for 30 fb⁻¹: 95% CL incl. syst.

 λ_7 : (-0.0073, 0.0073)

 $\Delta \kappa_7$: (-0.11, 0.12)

 Δg_{17} : (-0.0086, 0.011)

 λ_{v} : (-0.0035, 0.0035)

 ΔK_{v} : (-0.075, 0.076)

Anomalous Quartic couplings

Top Quarks

 The "top quark physics" baton will be passed from the Tevatron to the LHC in the next year

Why top quark physics?

- Top quark within Standard Model:
 - It exists! Measure its fundamental parameters (production cross -section, mass, couplings, etc.)
- Top quark beyond the Standard Model:
 - Top may be produced in new particle decays (t-tbar resonances, heavy H ...)
 - Top quarks may decay in peculiar ways, e.g. t→H+b
 - Top production will be a background many new physics processes
- Top is a 'template' for many new physics topologies
 - Complex decay signatures involving leptons, missing energy, multi--jets, b-jets
 - Understand the detectors, develop the tools needed for hunting for exotic things
 - → Understanding top physics is essential in many searches

Top physics at LHC

strong t-tbar pair production

• $\sigma_{tt}(th) = 830 \pm 100 \text{ pb}$ @ 14 TeV

electroweak single top production

• $\sigma_t(th) \approx 320 \text{ pb} @ 14 \text{ TeV}$

- At 10³³ cm⁻²s⁻¹ ('nominal' low luminosity), get 1 top pair/second, or 8M/year
 - Initial data samples in 2008: 10-100 pb⁻¹ = few 1000 or 10000s of such events not including experimental acceptance and reconstruction efficiencies
 - Note will start LHC in summer 2008 with reduced beam energy (√s≈10TeV) - top pair cross-section reduced by factor ~2

Msmn'ts @ Startup

- 10pb⁻¹ & 100 pb⁻¹
- Complicated event:
 - Need to understand all objects in the event: leptons, jets, Missing Energy.
- Use samples for calibration
 - jet energy scale
 - performance of b-jet algorithm.
 - Understanding the shape of Missing Transverse Energy
- Measure production cross section
 - Strong pair production and Electroweak single production.

implications of cross section

- compare different channels
 - B(t→Wb)>0.79 @ 95% CL
 - B(t→H+b)<0.35 @ 95% CL for $m_{H+} = m_W$ and H+→cs
- Test QCD predictions
 - Validate predictions for massive fermion pair production rate (e.g. gluinos, T quarks in little-Higgs models, etc.)
 - Test accuracy of resummation techniques, validating their use in other contexts
 - Provide input in determination of PDF: gg dominant, almost no qg/qqbar, no qq
- compare with theory (D0)

$$-\sigma_{tt} = 7.62 \pm 0.85 \text{ pb}$$

for $m_{top} = 172.6 \text{ GeV}$

$$- m_t = 170 \pm 7 \text{ GeV}$$

implications of cross section

Mangano, Top2008

Dilepton Signal Significance (10pb⁻¹⁵)

Trigger Requirements: two leptons (ee, eμ or μμ)

Analysis requirements

- Lepton pT > 20 GeV.; opposite sign leptons which are isolated both in calorimeter and tracker.
- Missing Energy E_t miss:
 - (e μ > 20 GeV ee & $\mu\mu$ >30 GeV)
- Z removal
- Require jets with pT > 30 GeV
- Jet multiplicity spectra
 - Signal region: N_i≥2
 - Background region N_i=0,1
 - Major backgrounds: Drell Yan + Jets
- Signal Significance S:B ~ 25:1
- Statistical uncertainty ~ 9%

Dilepton Signal (100pb⁻¹)

- Require b-jets tagged using the simplest b-taggers.
 - b-tag ε = 65%, light quark mistag rate = 13%
- Pseudo data sample generated
 - Detector simulation includes calibration and alignment conditions as expected during the initial data dating with fist 100pb⁻¹
- Measure tt production cross section
- Compute efficiencies from a combination of data and MC.

 ε_{LT}^{HLT} : HLT efficiency from data

 $arepsilon_{tar{t}}^{ ext{MC}}$: event selection efficiency (MC) $arepsilon_{tar{t}}^{ ext{RECO}/ ext{sel}}$ MC vs data correction factor

Dilepton Signal (100pb⁻¹)

- Require b-jets tagged using the simplest b-taggers.
 - b-tag ε = 65%, light quark mistag rate = 13%
- Pseudo data sample generated
 - Detector simulation includes calibration and alignment conditions as expected during the initial data dating with fist 100pb⁻¹
- Measure tt production cross section
- Compute efficiencies from a combination of data and MC.

 ε_{II}^{HLT} : HLT efficiency from data

 $arepsilon_{tar{t}}^{MC}$: event selection efficiency (MC) $arepsilon_{tar{t}}^{MC}$ MC vs data correction factor

	ε _{tt}	$(\Delta\sigma/\sigma)_{\rm stat}$
ee	2.3%	15%
μμ	3.5%	18%
eµ	3.2%	11%

All channels $(\Delta \sigma/\sigma)_{stat} = 8\%$

Dilepton Cross Section (100pb⁻¹)

- Template Method:
 - Build 2-D distributions from (E_T^{miss}, N_{jets}) for signal & bkg
 - Maximize likelihood to extract parameters
 - Additional systematics from template shapes

dataset	еμ	e e	μμ	all channels
tī (signal)	555	202	253	987
ε [%]	6.22	2.26	2.83	11.05
ε [%] Total bkg.	86	36	73	228
S/B	6.3	5.6	3.4	4.3

ncertainty:

Expt	Int.L	Method	Stat(%)	Syst(%)	Lumi (%)
ATLAS	100 pb ⁻¹	count	3.6	3.6	5
ATLAS	100 pb ⁻¹	template	3.8	4.2	5
ATLAS	100 pb ⁻¹	likelihood	5.2	6.7	5
CMS	10 fb ⁻¹	count	0.9	11	3

eτ, μτ Events (100 pb⁻¹)

- Event Selection:
 - At least one e/m with pT>30 geV
 - One t candidate (opposite charge)
 - pTleadTrk > 20GeV/c, |η| < 2.4
 - ETmiss > 60 GeV
 - Objects separated by $\Delta R > 0.3$
 - tagging b-jets could possibly double S/B
- Large mis-identified jets $\to \tau$ background
 - QCD W+jets and Semileptonic ttbar
 - Use di-jet samples (γ+jets and multi-jet) to determine the fake jet → τ fake prob as a function of p_T.
 - Apply the mis-id rate to the jets passing selection to obtain the background spectrum.

	one- prong	three- prong
S/B	0.397	0.139
ε(ет)	2.1%	0.42%
ε(μτ)	2.7%	0.43%

eτ, μτ Cross section (100 pb⁻¹)

- Cross section:
- Initially measure the ratio

$$R = \frac{\sigma[t\bar{t} \to (l\nu)(\tau v_{\tau})b\bar{b}]}{\sigma[t\bar{t} \to (l\nu)(l\nu)b\bar{b}]}$$

- Sensitive to non-SM physics in top decays
 - Important background for SUSY/H searches
- Some Systematic uncertainties cancel out in the ratio.

Single Lepton + Jets (10 pb⁻¹)

- Trigger on non-isolated single µ
- Event Selection:
 - $pT(\mu) > 30 \text{ GeV}; |\eta(\mu)| < 2.1$
 - Track and calorimeter isolation
 - Can establish signal for 100 pb⁻¹, even with pessimistic background

Jet cuts

- N jets ≥ 4 with pT jet >40 GeV
- N jets (pT jet>65) ≥1
- Select the three jets that combine to maximize $(\sum_{i=1}^{n} \vec{p}_{J,i})_T$
- 30% efficiency

Single Lepton + Jets (100 pb⁻¹)

- Event Selection:
 - High p_T lepton. Jets, E_T^{miss}
 - Eff: ε~18% (e); : ε~ 24% (mu)
- Expect peak in top mass constructed using the 3-jet combination with highest P_T

- MW constraint (S/B = 3.5)
- Centrality (S/B = 5)
- Peak clearly visible with 100/pb
- $\Delta \sigma / \sigma (\text{stat}) = 3.5\%$
- $\Delta \sigma / \sigma (sys) \sim 15\%$
- Requiring one or 2 b-tags
 - Purity improved by a factor of 4, but signal efficiency reduced by a factor of 2.

b-tag+M_W constraint

Single Lepton + Jets

- Cross Section Extraction:
 - Likelihood Fit to mass spectra (Gaussian sig. +Chebychev pol bkg)
 - Sensitive to the shape of spectrum.
 - For O(fb⁻¹), b-tagging, PDFs & luminosity become important

Expt	Int.L	Method	Stat (%)	Syst (%)	Lumi (%)
ATLAS	100 pb ⁻¹	count (W→e)	2.5	14	5
ATLAS	100 pb ⁻¹	likelihood	7.4	15	5
CMS	1 fb ⁻¹	count	1.2	9.2	10
CMS	10 fb ⁻¹	count	0.4	9.2	3

Top Quark Mass

Current Status:

Mass: Semileptonic Events

Fit reconstructed hadronic top quark to Gaussian + polynomial.

Mass: Semileptonic Events

- Overall uncertainty: δM top ~ 1 GeV for 1 fb -1 (assuming 1% δJES)
- During startup assuming 5% δJES: δM ~ 3.5 GeV

	IM	-M-TM, 1046//1
Systematic uncertainty	χ^2 minimization method	geometric method
Light jet energy scale	0.2 GeV/%	0.2 GeV/%
b jet energy scale	0.7 GeV/%	0.7 GeV/%
ISR/FSR	$\simeq 0.3 \text{ GeV}$	$\simeq 0.4 \text{ GeV}$
b quark fragmentation	≤ 0.1 GeV	≤ 0.1 GeV
Background	negligible	negligible

250 L=1 fb ⁻¹ Signal Signal Signal Physical background	
150 •Pull=N(-0.16,0.94) Physical background	1
50 130 140 150 160 170 180 190 200 210 220 M _{jjch} -M _j +M ^{pegk} [GeV	

Systematic uncertainty	1 b-tagged jet	No b-tagging
Light jet energy scale [GeV/%]	0.3	0.4
b jet energy scale [GeV/%]	0.7	0.7
background [GeV]	< 1	1

Mass Dilepton Events

- The event is under constrained so assume top quark mass and longitudinal direction of the neutrinos.
 - Solve system analytically (using methods developed at the Tevatron)
 - Step in top mass 100-300 GeV and weight event solutions according to the E_T^{miss} measurement and expected neutrino distributions.
 - Pick most likely top mass
- Overall uncertainty:

 $M_{top} \sim 4.5 \text{ GeV for 1 fb}^{-1} M_{top} \sim 1.2 \text{ GeV for 10 fb}^{-1}$

Mass: Dilepton Events $tt \rightarrow (J/\psi) lv + X$

- Very small branching ratio : ~5.5*10-4
- same flavor opposite charged non-isolated low momentum leptons
 - J/ψ mass constraint; 2 b-tagged jets
 - Combine J/ψ with leading lepton
 - Fit peak using polynomial
- Mass indirect: linear lookup from MC

Single Lepton: di-top mass spectrum

- Use Default selection.
- Kinematic fit imposes Mw and
- M_{top} + min X^2 used to choose jet
- assignment → improves reco

Resolution: critical.

RMS(M_{tt}^{true} - M_{tt}^{reco})/ M_{tt}^{true} ~5% to 9% in 200 to 850 GeV range

Variable bin size (2•8% M_{tt}) to reduce bin-to-bin migrations

Expected stat uncertainty on M_{tt} bins: from $\sim 3\%$ to $\sim 25\%$ (8% on av)

Consistency check of SM and openly sensitive to new physics

Single top production at LHC

- Electroweak top quark production contrast to pair production
 - Sensitive to new particles (e.g. H⁺, W') and flavor changing neutral currents
 - background to many new physics searches (lepton, missing energy)
- Overall cross section is large (c.f Tevatron), can distinguish contributions:

- Large backgrounds from top pair production, also W+multijet and QCD jet events
- At LHC attempt to measure all production modes (s-chan & Wt challenging)
 - Can then extract |V_{tb}| and study polarization, charge asymmetries, searches ...
 - Basic event signatures: high E_T lepton, missing E_T , restricted number of jets
 - Fighting large backgrounds which will have to be understood from data

Single top production: t-channel

- Require lepton, missing E_T and one b-jet from the top quark decay
- Jet from light quark is forward, can require this jet and/or veto additional central jets
 - Second b-jet is usually soft below E_T cut
- O(1k) events per fb⁻¹, similar size tt background ⇒ large systematics (jet E scale, ε_b)
- Can be reduced by multivariate techniques - e.g. Boosted Decision Tree with event shape variables
- Measurement to ~10% precision possible with 10 fb⁻¹
 - Then get |V_{tb|} to ~5%

Expt	Int.L	Method	Stat(%)	Syst(%)	Lumi (%)
CMS	10 fb ⁻¹	count	2.7	8	5

Single top prod.: W-t & s-channel

- Much smaller signal cross-sections, very large background
 - Especially from top-pair events where some particles are missed
 - W-t: channel: Single b-jet; look for two light jets consistent with W decay (l-j channel), or second lepton from leptonic W decay
 - Use control region with similar kinematics but rich in top-pairs (e.g. require extra b-jet) to estimate background, cancel syst)
 - S-channel: Two b-jets, lepton + missing ET, no other high ET jets

- Multivariate techniques can be used to enhance signal significance
- Some representative analysis results note small S/B and large syst.
 - Mainly from background b-tagging, jet energy scale, PDFs,

Expt	Channel	Int.L	Nsignal	S/B	Stat(%)	Syst(%)	Lumi (%)
CMS	W-t (I-j)	10 fb ⁻¹	1700	0.18	7.5	17	8
CMS	W-t (I-I)	10 fb ⁻¹	570	0.37	8.8	24	5
CMS	s-chan	10 fb ⁻¹	270	0.13	18	31	5

• Need O(10) fb-1 of data and careful background studies to establish 5σ signals

The Roadmap

O(10pb-1)	W/Z	Calibration /Alignment	2008
		Lepton ID	
		Missing Et	
		Isolation	
O(100pb-1)	W/Z + jets	PDfs	
	Top physics	B tagging , missing Et	
		"Multi Variables" analysis	
O(1fb-1)	Precision Top	In Situ Final Jets Calibration	2009
1	Physics	Full detector understanding	
	TGC		
	Solid Grounds for New Physics Should be Established		\vdash
	. 0.0		
O(100fb-1)	sin²(૭)		
and more	M _W		

Conclusions

- ATLAS and CMS are eagerly awaiting the first data ...
 - Detectors/software/analysis strategies are 'almost' ready ...
- Useful measurements can already be performed with ~ 100 pb⁻1
 - that we might hope to get in 2008 or soon after
- W and Z events provide important early measurements at LHC.
 - Help to understand detectors and physics performance.
 - Precision measurements with data of 1 fb⁻¹ get limited by thoeretical uncertainties,
 - Reduce theoretical errors, mainly by constraining PDFs.
- Top Quark Physics will benefit from the large samples:
 - Early pair production cross-section measurement
 - 10-20% with O(100 pb-1), then work on systematics
 - E.g. detailed understanding of b-tagging algorithm performance
 - Searches for non-SM physics in top production/decay can start immediately...
 - Consistency of cross-section in different channels; top-pair vs single t

Backup Slides

PDF constraints from W-ly

Main (LO) contribution

$$u\overline{d} \to W^+ \quad d\overline{u} \to W^-$$

- At the EW scale LHC will explore low-x partons.
 - 10⁻⁴<x_{1,2}<0.1 over measurable rapidity range |y|<2.5.
 - low-x uncertainties on present PDF are large (4-8%)
- Measurements of e[±] angular distributions can provide discrimination between different PDF.
 - experimental precision is sufficiently small (<5%)

PDF constraints from W→2v

Example:

- Simulate 10⁶ W→enu events (an equivalent of 150pb⁻¹ of data)
- Generated with CTEQ6.1 PDF and detector simulation
- Introduce 4% systematic errors from detector simulation (statistical error negligible)
- Include pseudo-data in the global ZEUS PDF fit ⇒ error on low-x gluon shape reduced by 41%
 - systematics (e.g. e± acceptance vs η) are already controlled to a few percents with Z→ee
- low-x gluon distribution determined by shape parameter λ , $xg(x) \sim x^{-\lambda}$:

BEFORE
$$\lambda = -0.199 \pm 0.046$$

AFTER $\lambda = -0.186 \pm 0.027$

Normalisation free → independent of luminosity

Top-pair spin correlations

- Top decays before hadronisation or depolarisation
 - Decay products give info on top quark spin
 - Look for correlations between top/anti-top (↑↑ vs ↑↓)
 - Different for qq and gg production, in SM A≈0.32
- Measure decay angle distribution in semileptonic events

Can use b-quark or lower energy light quark

- ATLAS/CMS expect 5σ observation of spin correlation with O(10 fb⁻¹) data, in both semileptonic and dileptonic decays
 - Systematics dominate (jet energies, b-tagging, PDFs)
- Various related observables e.g. W polarisation
 - Also look for anomalies in t→Wb vertex structure
 - Can give hints for new physics in top decay

Rare top decays flavour changing neutral currents

- FCNC decays $t \rightarrow \{Z_{,\gamma}, g\}q$, suppressed in SM (10^{-10})
 - Allowed at tree-level in SUSY, multi-H, exotic quarks
 - Could conceivably get BR 10⁻³ -10⁻⁶ ...
 - Typical search strategies in top-pair production
 - Assume one quark decays t→Wb with leptonic W
 - Look for leptonic Z decay, photon, high E_T gluon jet sekarounds typically dominated by mis-ID top-pair
 - Backgrounds typically dominated by mis-ID top-pair
 - Remove some contributions using likelihood selection with event shape and top mass reconstruction (ATLAS)

Decay	Expt	Method	BR (5σ sens @ 100fb ⁻¹)
t→Zq	ATLAS	Cut (Z →qq)	5×10 ⁻⁴
	ATLAS	Likelihood (Z →II)	1.4×10 ⁻⁴
	CMS	Cut (Z →II)	3×10 ⁻⁴
t→γq	ATLAS	Likelihood	3×10 ⁻⁵
	CMS	Cut	2.5×10 ⁻⁴
t→gq	ATLAS	Likelihood (3-jet)	1.4×10 ⁻³
	ATLAS	Likelihood (>3 jet)	2.2×10 ⁻³

•Example 95% CL limits:

Forward & Backward Asymmetry at the Z

Θ-dependence of cross-section <u>a</u>

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta} = \frac{3}{8} N_c [1 + \frac{4}{3} A_{FB} \cos\theta + \cos^2\theta]$$

- Assumption for pp-collisions: the quark direction is the same as the boost of the Z
 - Correct for large di-lepton rapidities
 - Only EM calorimenters provide the required large η-coverage
- Determination of A_{FR} is a 'simple' counting problem
 - A statistical precision of the Weinberg angle of 10⁻⁴ at ∫Ldt=100fb⁻¹ reachable.
 - Dominating systematic: PDF Uncertainties → Use A_{FB} to constrain

$$\bullet A_{FB} = b \{ a - \sin^2 \theta_{\text{eff}}^{\text{lept}}(M_Z^2) \}$$

THE precision measurement: M_W

- Aim: M_W <15 MeV
- Observables sensitive to M_w
 - Lepton Transverse Momentum
 - Transverse Mass |ηI | < 2.5
- For the production of W and Z : same QCD effects for both!
 - Large uncertainties for prediction of transverse momenta of W,Z (due to soft gluon radiation)
- Use Z to predict W pT spectrum
 - Precision MC needed to correct for
 - Different phase-space $(M_W \neq M_Z)$
 - Different EWK couplings
 - Systematics controlled using the (huge)
 Z sample

M_w: Systematics

• $\Delta M_W \approx 15$ MeV possible (10 fb⁻¹) Constrain Lepton scale from Z.

Minimum Bias

- One of the first measurement: charged hadron spectrum in minimum bias events
 - Never measured with $\sqrt{s} > 2\text{TeV}$
 - Tool to understand detector response
- Spectrum obtained considering one month of data with an allocated MinBias trigger bandwidth of 1Hz.

Measurement of Underlying Event

- Underlying event: everything but the leading hard scattering of the collision
 - Important for jet & lepton isolation, energy flow, jet tagging, etc.
- Current UE models tuned at Tevatron give different extrapolations for the LHC
- Underlying event uncertain at LHC, depends on
 - multiple interactions, PDFs, gluon radiation
- Look at tracks in transverse region w.r.t. jet activity

N^o_ charged particles in transverse region:
p_T>0.5 GeV and |η|<2

