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Asymptotic limit
of the dynamics isolated many-body systems

– Stationary measure reached ?

– In one or several time-regimes ?

– Which one(s) ?

– Thermal à la Gibbs-Boltzmann or other ?

All these questions can be posed, and are difficult to answer, in both

classical and quantum systems.
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Asymptotic limit
of the dynamics isolated many-body systems

– Stationary measure reached ?

– In one or several time-regimes ?

– Which one(s) ?

– Thermal à la Gibbs-Boltzmann or other ?

All these questions can be posed, and are difficult to answer, in both

classical and quantum systems.

In the following : equilibrium ≡ Gibbs-Boltzmann equilibrium.
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Dynamics in equilibrium
Conditions on classical systems

Equilibrium is a matter of statics,

instantaneous probability density ρ({r⃗i, v⃗i}; t0)

but also of dynamics,

evolution operators/transition probabilitiesU({r⃗i, v⃗i}, t0 → {r⃗′i, v⃗′i}, t)

ρ 7→ e−βH/Z and conditions on U have to be met to ensure that the

system reaches the Gibbs-Boltzmann equilibrium at a given time t0.
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Dynamics in equilibrium
Conditions on quantum systems

Equilibrium is a matter of statics,

instantaneous probability density ρ̂(t0)

but also of dynamics,

evolution operators Û(t0 → t)

ρ̂ 7→ e−βĤ/Z and Û 7→ e−iĤ(t−t0)/ℏ to ensure that the system

reaches Gibbs-Boltzmann equilibrium at a given time t0.
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Aim of this talk
in a sentence

Advocate the use of fluctuation-dissipation relations as tests of

Gibbs-Boltzmann equilibration.
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FDRs

The fluctuation-dissipation theorem is a model-dependent relation bet-

ween the linear response functions and the correlations of the corres-

ponding spontaneous fluctuations.

In equilibrium, the FDT applies to any pair of observables.

The FDT involves the temperature but no other characteristic of the sys-

tem.

Whenever the FDT does not apply, the system is out of equilibrium.

Why insist upon looking at FDRs ? Because they go beyond the functional

form of correlation functions.
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Two-time observables
Correlations

timet=0 t tw
preparation
   time

waiting 
   time

measuring
   time

0 τ

The two-time correlation between two observables Â(t) and B̂(tw) is

CAB(t, tw) ≡ ⟨ Â(t)B̂(tw) ⟩

expectation value in a quantum system, ⟨. . .⟩ = Tr . . . ρ̂/Trρ̂

or the average over realizations of the dynamics (initial conditions, random num-

bers in a MC simulation, thermal noise, etc.) in a classical system.
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Two-time observables
Linear response

− δ δ+

h

t t
2 2

w w0 t

The perturbation couples linearly to the observable B̂ at time tw

Ĥ → Ĥ − h(tw)B̂

The linear instantaneous response of another observable Â(t) is

RAB(t, tw) ≡
δ⟨Â(t)⟩h
δh(tw)

∣∣∣∣∣
h=0

Similarly in a classical system
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Linear response
In an asymptotic steady case

The dynamics are stationary

CAB → CAB(t− tw) and RAB → RAB(t− tw)

Fourier transforms

C̃AB(ω) and R̃AB(ω)

Kubo formula, just linear response, to obtain

−π−1ImR̃AB(ω) = C̃AB(ω)∓ C̃BA(−ω)
Bosons

Fermions

No need to use ρ̂ = Z−1e−βĤ to prove this relation.

Usual notation : −π−1ImχAB(ω) = SAB(ω)∓ SBA(−ω) = [Â, B̂]∓
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Fluctuation-dissipation theorem
Gibbs-Boltzmann density operator ρ̂ = Z−1e−βĤ

C̃BA(−ω) = eβωC̃AB(ω)

and then

ImR̃AB(ω) = [ℏ−1 tanh(βℏω/2)]±1 C̃AB
± (ω)

Bosons

Fermions

Classical limit : ImR̃AB(ω) = βω C̃AB(ω)
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Fluctuation-dissipation relations
Any evolution

Just measure

ImR̃AB(ω) and C̃AB
± (ω)

take the ratio and extract tanh(βAB
eff (ω)ℏω/2)

In equilibrium all βAB
eff (ω) should be equal to the same constant
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Isolated quantum systems
Quantum quenches

• Take an isolated quantum system with Hamiltonian Ĥ0

• Initialize it in, say, |ψ0⟩ the ground-state of Ĥ0 (or any ρ̂(t0))

• Unitary time-evolution with Û = e−
i
ℏ Ĥt with a Hamiltonian Ĥ .

Does the system reach some steady state ?

Are at least some observables described by thermal ones?

When, how, which?
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Quantum quenches
Questions

Does the system reach a thermal equilibrium density matrix ?

Does its dynamics satisfy the equilibrium rules ?

different cases of interest : non-integrable vs. integrable systems ; role of initial

states ; non critical vs. critical quenches, etc.

• Definition of Te from ⟨ψ0|Ĥ|ψ0⟩ = ⟨Ĥ⟩Te = Z−1
βe

Tr Ĥe−βeĤ

Just one number, it can always be done

• Comparison of dynamic and thermal correlation functions, e. g.

C(r, t) ≡ ⟨ψ0|ϕ̂(x⃗, t)ϕ̂(y⃗, t)|ψ0⟩ vs. C(r) ≡ ⟨ϕ̂(x⃗)ϕ̂(y⃗)⟩Te .

Calabrese & Cardy ; Rigol et al ; Cazalilla & Iucci ; Silva et al, etc.

But the functional form of correlation functions can be misleading !
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Quantum quenches
Questions

Does the system reach a thermal equilibrium density matrix ?

Does its dynamics satisfy the equilibrium rules ?

different cases of interest : non-integrable vs. integrable systems ; role of initial

states ; non critical vs. critical quenches, etc.

• Definition of Te from ⟨ψ0|Ĥ|ψ0⟩ = ⟨Ĥ⟩Te = Z−1
βe

Tr Ĥe−βeĤ

Just one number, it can always be done

• Comparison of dynamic and thermal correlation functions, e. g.

C(r, t) ≡ ⟨ψ0|ϕ̂(x⃗, t)ϕ̂(y⃗, t)|ψ0⟩ vs. C(r) ≡ ⟨ϕ̂(x⃗)ϕ̂(y⃗)⟩Te .

Calabrese & Cardy ; Rigol et al ; Cazalilla & Iucci ; Silva et al, etc.

Proposal : put qFDT to the test to check whether Teff = Te exists
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Fluctuation-dissipation relations
Quantum SU(2) Ising chain

The initial Hamiltonian ĤΓ0 = −
∑
i

σ̂x
i σ̂

x
i+1 + Γ0

∑
i

σ̂z
i

The initial state |ψ0⟩ ground state of ĤΓ0

Instantaneous quench in the transverse field Γ0 → Γ

Evolution with ĤΓ.
Iglói & Rieger 00

Reviews : Karevski 06 ; Polkovnikov et al. 10 ; Dziarmaga 10

Observables : correlation and linear response of local longitudinal and

transverse spin, etc.

Specially interesting case Γc = 1 the critical point. Rossini et al. 09

20



Quantum quench
Teff from the transverse spin FDR

ℏ ImRz(ω) = tanh

(
βz
eff(ω)ωℏ

2

)
Cz

+(ω)
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eff(ω) and βM

eff (ω) ̸= ct
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Quantum quench
Teff from the longitudinal spin FDR
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Insets

e−τ/τc

τ−2 sin(4τ + ϕ)

Cx(τ) ≃ Ace
−τ/τc [1− acτ

−2 sin(4τ + ϕc)]

Rx(τ) ≃ ARe
−τ/τc [1− aRτ

−2 sin(4τ + ϕR)]

Foini, LFC & Gambassi 11
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Quantum quench
Teff from FDT ?

For sufficiently long-times such that one drops the power-law correction

−βx
eff ≃ Rx(τ)

dτCx
+(τ)

≃ −τcAR

Ac

A constant consistent with a classical limit but

T x
eff(Γ0) ̸= Te(Γ0)

Morever, a complete study in the full time and frequency domains confirms

that T x
eff(Γ0, ω) ̸= T z

eff(Γ0, ω) ̸= Te(Γ0) (though the values are close).

Fluctuation-dissipation relations as a probe to test thermal equilibration

No equilibration for generic Γ0 in the quantum Ising chain
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Quantum quench
No Teff from FDT

A quantum quench Γ0 → Γc = 1 of the isolated Ising chain
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Foini, LFC & Gambassi 11
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Another example
1d hard-core bosons in a super-lattice potential

Fermionic representation :

Ĥ0(∆) = −
∑

i f̂
†
i f̂i+1 + h.c. +∆

∑
i(−1)i f †

i fi

Quench from the ground state of Ĥ0(∆) to Ĥ = Ĥ0(∆ = 0).

Although ρ̂ 7→ ρ̂GGE ≈ ρ̂GB for ∆ ≫ |ωk| = O(1)

Chung, Iucci & Cazalilla 12

the FDT is not satisfied in this same limit, and different FDRs yield dif-

ferent Teffs.

Bortolin & Iucci 15
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Another example
1d hard-core bosons in a super-lattice potential

ω

(local) density operator

Â = B̂ = n̂in̂i

(non-local) boson operator

Â = B̂ = b̂†i b̂i

Bortolin & Iucci 15

Similar ideas in models of photon/polariton condensates,

Chiocchetta, Gambassi, Carusotto 15
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Summary
Fluctuation-dissipation relations

• Use of fluctuation-dissipation relations in the dynamics of closed

quantum systems to check for Gibbs-Boltzmann equilibrium.
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Effective temperatures
What happens in glasses ?

Glasses are out of equilibrium.

There is a separation of time-scales in their relaxation,

with a crossover at, roughly, ωtw

The FDRs take a very special form :

ωtw ≪ 1 quasi-stationary relation and FDT OK.

ωtw ≫ 1 non-stationary relation and a single constant Teff .

Teff depends upon

the initial condition before the quench (disordered vs. ordered) ;

weakly on other parameters of the systems.

LFC 11, review
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Dissipative quantum glasses
Quantum p-spin coupled to a bath of harmonic oscillators

C

R

τ

χ

C

Out of equilibrium decoherence

LFC & Lozano 98
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