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Asymptotic limit

of the dynamics isolated many-body systems

— Stationary measure reached ?
— In one or several time-regimes ?
— Which one(s) ?

— Thermal a la Gibbs-Boltzmann or other ?

All these questions can be posed, and are difficult to answer, in both

classical and quantum systems.



Asymptotic limit

of the dynamics isolated many-body systems

— Stationary measure reached ?
— In one or several time-regimes ?
— Which one(s) ?

— Thermal a la Gibbs-Boltzmann or other ?

All these questions can be posed, and are difficult to answer, in both

classical and quantum systems.

In the following : equilibrium = Gibbs-Boltzmann equilibrium.



Dynamics In equilibrium

Conditions on classical systems

Equilibrium is a matter of statics,
instantaneous probability density p({75, Ui }; to)
but also of dynamics,

evolution operators/transition probabilities U ({77, U; }, to — {77, U, }, 1)

p + e PH /7 and conditions on [/ have to be met to ensure that the

system reaches the Gibbs-Boltzmann equilibrium at a given time 1.



Dynamics In equilibrium

Conditions on quantum systems

Equilibrium is a matter of statics,
instantaneous probability density (%)
but also of dynamics,

N

evolution operators Uty —t)

p s e )7 and U s e Hi—10)/h {5 ensure that the system

reaches Gibbs-Boltzmann equilibrium at a given time 7.



Aim of this talk

in a sentence

Advocate the use of fluctuation-dissipation relations as tests of

Gibbs-Boltzmann equilibration.



FDRs

The fluctuation-dissipation theorem is a model-dependent relation bet-
ween the linear response functions and the correlations of the corres-

ponding spontaneous fluctuations.
In equilibrium, the FDT applies to any pair of observables.

The FDT involves the temperature but no other characteristic of the sys-

tem.
Whenever the FDT does not apply, the system is out of equilibrium.

Why insist upon looking at FDRs ? Because they go beyond the functional

form of correlation functions.



Two-time observables

Correlations

0 T
t f f -
t=0 tw t time
preparation waiting measuring
time time time

The two-time correlation between two observables A(t) and B(t,,) is

Cap(t,tw) = (A(t)B(tw))

expectation value in a quantum system, (...) = Tr...p/Trp
or the average over realizations of the dynamics (initial conditions, random num-

bers in a MC simulation, thermal noise, etc.) in a classical system.



Two-time observables

Linear response

0 t,-0 t+0 t

w

2 2

A

The perturbation couples linearly to the observable 5 at time £,

H — H—h(ty)B

A

The linear instantaneous response of another observable A () is

RAB(t, tw) =

Similarly in a classical system



Linear response

In an asymptotic steady case

The dynamics are stationary
CAB — CAB(t — tw) and R — RAB(t — tw)

Fourier transforms

é’AB(w) and }?AB(w)

Kubo formula, just linear response, to obtain

- = = Bosons
—m ImR p(w) = Cap(w) F Cpa(—w)

Fermions

No need to use p = Z ‘e "* to prove this relation.

Usual notation : =7~ Himy ap(w) = Sap(w) F Spa(—w) = [A, B



Fluctuation-dissipation theorem

Gibbs-Boltzmann density operator p = 2 —l—BH
C’BA(—w) — eﬂw(}AB(w)
and then
MRAB () = [h-L tanh(Bhw/2)|E! C4B ()| D050
Fermions

Classical limit : ImRAP (w) = Bw CAB(w)



Fluctuation-dissipation relations

Any evolution

Just measure

ImRAB (w) and CP (w)

take the ratio and extract tanh (/37 (w)hw/2)

In equilibrium all 347 (w) should be equal to the same constant
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Isolated quantum systems

Quantum quenches

Take an isolated quantum system with Hamiltonian f]o

1)) the ground-state of H, (or any 0(t0))
i [

Initialize it in, say,

Unitary time-evolution with [ = ¢ 7" with a Hamiltonian 7.

Does the system reach some steady state ?

Are at least some observables described by thermal ones?

When, how, which?




Quantum quenches

Questions

Does the system reach a thermal equilibrium density matrix ?

Does its dynamics satisfy the equilibrium rules ?

different cases of interest : non-integrable vs. integrable systems ; role of initial

states; non critical vs. critical quenches, elc.
Definition of 7, from (vo|H o) = (H)r, = Z; ' Te He 77
Just one number, it can always be done
Comparison of dynamic and thermal correlation functions, e. g.
C(r,t) = (o] (T, )97, 1) [1ho) vs. C(r) = (H(B)(§))..

Calabrese & Cardy ; Rigol et al ; Cazalilla & lucci ; Silva et al, etc.

But the functional form of correlation functions can be misleading !




Quantum quenches

Questions

Does the system reach a thermal equilibrium density matrix ?

Does its dynamics satisfy the equilibrium rules ?

different cases of interest : non-integrable vs. integrable systems ; role of initial

states ; non critical vs. critical quenches, efc.
Definition of 7, from (1| H |10g) = (H )y, = Z;* Tr He P!l
Just one number, it can always be done
Comparison of dynamic and thermal correlation functions, e. g.
C(r,t) = (ol d(, 1)o7, )0} vs. C(r) = (d(£)(§)) 1.

Calabrese & Cardy ; Rigol et al ; Cazalilla & lucci ; Silva et al, etc.

Proposal : put gFDT to the test to check whether 1. = T, exists




Fluctuation-dissipation relations

Quantum SU(2) Ising chain

The initial Hamiltonian ﬁpo = — Z 0;0:,1 + 1 Z o;
) )

The initial state |¢/) ground state of Hr,
Instantaneous quench in the transverse field I'g — I

Evolution with f[p.
Igléi & Rieger 00

Reviews : Karevski 06 ; Polkovnikov et al. 10 ; Dziarmaga 10

Observables : correlation and linear response of local longitudinal and

transverse spin, etc.

Specially interesting case 1. = 1 the critical point. Rossini et al. 09



Quantum quench

I . from the transverse spin FDR

B ImE*(w) = tanh ( 5ff<°2">”h> C* (w)

T

P o m— e E— m—
L]

1 ‘N

0.75




Quantum quench

I . from the longitudinal spin FDR

Iy &0

1605;; Insets
0.8

16-095:

1e-13;_' e_T/TC
0.6+

0.25}

T 2sin(471 + @)

Co(1) ~ Ace™ /™[l — acT 2 sin(47 + ¢c)]
R*(7) ~ Are™ /™[l — apr 2sin(47 + ¢5)]

Foini, LFC & Gambassi 11



Quantum quench

1o from FDT ?

For sufficiently long-times such that one drops the power-law correction

R*(T) T AL

Y ___

TPt =) T A,

A constant consistent with a classical limit but

s (L) # Te(To)

Morever, a complete study in the full time and frequency domains confirms
that 7% (I'o, w) # T (T, w) # T.(I'y) (though the values are close).

Fluctuation-dissipation relations as a probe to test thermal equilibration

No equilibration for generic 1 in the quantum Ising chain



Quantum quench

No /.4 from FDT

A quantum quench I’y — 1. = 1 of the isolated Ising chain

T t>>1

saT_ t>>1FDT class
oeT, w=0r=0
~T, w=0r=10

E
= T

Foini, LFC & Gambassi 11



Another example

1d hard-core bosons in a super-lattice potential

Fermionic representation :

Ho(A) = =3, [l fi1 + 0o+ A (=) [l f,

Quench from the ground state of Hy(A)to H = Hy(A = 0).
Although p — paar ~ pap for A > |w,| = O(1)

Chung, lucci & Cazalilla 12

the FDT is not satisfied in this same limit, and different FDRs yield dif-

ferent 1 .gs.

Bortolin & lucci 15



Another example

1d hard-core bosons in a super-lattice potential

(local) density operator
060 T | T : | T ::I- T | : T | T é T | T : | T lfg T | T : T | T 4
lo-ll T |I 1 1 |I L II .u"l_"'A =1

0.8 i |=——Aa=20
- | osp . | (non-local) boson operator
2% 0.7} i 1 : A h _ pir
S . | A=B=10b

0.6 _ml I R B | |(b|)_

0 1 2 3 4 5 6

w
Bortolin & lucci 15

Similar ideas in models of photon/polariton condensates,

Chiocchetta, Gambassi, Carusotto 15



Summary

Fluctuation-dissipation relations

Use of fluctuation-dissipation relations in the dynamics of closed

guantum systems to check for Gibbs-Boltzmann equilibrium.



Effective temperatures

What happens in glasses ?

Glasses are out of equilibrium.

There is a separation of time-scales in their relaxation,

with a crossover at, roughly, wt,,

The FDRs take a very special form :
wt,, < 1 quasi-stationary relation and FDT OK.
wt,, =>> 1 non-stationary relation and a single constant 7/ ..
I . depends upon
the initial condition before the quench (disordered vs. ordered) ;

weakly on other parameters of the systems.

LFC 11, review



Dissipative quantum glasses

Quantum p-spin coupled to a bath of harmonic oscillators
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Out of equilibrium decoherence

LFC & Lozano 98



