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1. Review of spectral covers

Common strategy in mathematics: search for

a duality operation that will simplify a given

problem.

Example: Fourier transform for functions on

a locally compact abelian group. Gives a way

of converting between continuous and discrete

data.

The spectral cover construction is another

example. Rougly this is a duality operation

which aims to replace a linear operator by its

spectrum.
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Simplest setup: Let V be a finite dimensional

C-vector space and let φ : V → V be an

endomorphism.

When φ is generic (=diagonalizable) one can

describe φ via its spectral data, i.e. by giving:

• the eigenvalues of φ;

• the decomposition of V into a direct sum

of φ-eigenlines;

• a mathcing between eigenvalues and

eigenlines.

If dim
C
V = n this means that we are specifying

n complex numbers

λ1, . . . , λn ∈ C (= spectrum of φ)

and to each such number we are prescribing a

line Li ⊂ V , so that L1 ⊕ . . .⊕ Ln = V .
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The spectral covers appear when we let this

picture vary in families.

If φs : V → V is a family of endomorphisms

parameterized by s ∈ S, then by repeating the

construction for each s we get a subvariety

S ⊂ S × C, where

S = {(s, λ) | λ is an eigenvalue of φs}

If all φs have distinct eigenvalues we also get

a family of eigenlines L(s,λ) parameterized by

the points of S.

The space S is called the spectral cover

corresponding to the family {φs}s∈S. Under

the genericity assumption S is an unramified

n-sheeted cover of S and it carries a line

bundle consisting of all eigenvalues of the φs’s.

Note: The data (S → S,L → S) completely

reconstructs the family {φs}s∈S.
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The correspondence {φs}s∈S ↔ (S,L) is not

very useful under the genericity assumption. In

applications one needs to deal with φs which

have repeated eigenvalues. In this case S → S

becomes ramified over s ∈ S and the fibers of

L→ S may jump at the multiple valued points.

Thus one expects some kind of a sheaf

structure for L along the ramification locus of

S → S.

Important special case: Allow φs to have

multiple eigenvalues but require that there is

exactly one Jordan block per eigenvalue.

Such an endomorphism of V is called regular.

It carries a single eigenline per eigenvalue. In

particular if all φs, s ∈ S are regular we get

again a line bundle L→ S on the spectral cover

S.
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More invariantly, consider the polynomial map

h : End(V ) //
C
n

φ � // (a1(φ), . . . , an(φ)),

where the ai(φ)’s are the coefficients

det(t · idV −φ) = tn + a1(φ)tn−1 + . . .+ an(φ).

of the characteristic polynomial of φ.

The spectrum of φ depends only on h(φ) and

so S is just the pullback via the map

S //
C
n

φs //h(φs).

of the obvious cover

C
n ⊂ Cn × C→ C

n,

given by the equation tn+a1t
n−1 + . . .+an = 0

in the coordinates (a1, . . . , an; t) ∈ Cn × C.
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The fibers of h : End(V ) → C
n are invariant

under conjugation action of GL(V ) and in fact

C
n = End(V )//GL(V )

is the GIT quotient.

Explanation: The orbits of the GL(V )-action

on End(V ) are not all closed and so the natural

topology on the set of orbits End(V )/GL(V )

will not be Hausdorff. To remedy that one

looks for a space End(V )//GL(V ) parameter-

izing the closures of GL(V )-orbits in End(V ).

For a general (regular and semisimple) φ in

End(V ) the GL(V )-orbit is closed and in a

neighborhood of such φ the quotients

End(V )/GL(V ) and End(V )//GL(V )

coincide.
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When φ is arbitrary, then GL(V ) · φ contains a
unique closed and a unique open orbit.
The closed one is the orbit of a semisimple
(diagonalizable) endomorphism and the open
one is the orbit of a regular endomorphism.
This leads to

Two interpretations for End(V )//GL(V ):
either as the space parameterizing semisim-
ple endomorphisms modulo conjugation, or as
the space parameterizing all regular endomor-
phisms modulo conjugation.

Both interpreations are useful but the one for
which the eigenlines vary ’continuosly’ is the
interpretation via regular endomorphisms.

Example: Let dimC(V ) = 2. Use SL(V ) instead of
GL(V ). Then we have h : SL(V ) → C, h(φ) = detφ,
and if detφ 6= 0, then φ is regular and semisimple. If
detφ = 0, then φ is nilpotent and then

h−1(0) =

{(
0 0
0 0

)}∐{
SL(V ) ·

(
0 1
0 0

)}
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Extensions and generalizations

To make the simple-minded spectral cover

construction useful in applications one needs

to extend it in two ways:

(i) Allow for abitrary groups G, not only for

GL(V );

(ii) Allow for twisted versions of φ.

For (i): Instead of looking at elements

φ ∈ End(V ) we take elements φ ∈ g for g :=

Lie(G) of some complex semi-simple group G.

The spectral cover construction in this case

is somewhat subtler since it has to reflect the

complexity of the group G. I will not discuss

this part of the story. For more details see Ron

Donagi’s papers . . . .
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For (ii): The ‘twisting’ of the {φs}s∈S can be
achieved in two ways. Firstly, one can allow for
the vector space V to vary with the point s ∈ S.
This is easily realized by replacing S × V by a
non-trivial vector bundle E on S. In this setup
the family of endomorphisms naturally should
be viewed as a section φ ∈ Γ(S,End(E)). Sec-
ondly, one can allow for φ to have nontrivial
coefficients in some coefficient object K.

The freedom of choosing K is essential in the
applications. Since the elements in K can be
thought of as the matrix coefficients of φ, it is
natural to require that K has an abelian group
structure. Possible natural choices for K are:
a vector bundle on X, a family of affine tori on
X, a family of abelian varieties on X or more
generally a family of commutative group stacks
over X.

We will see examples of most of these choices
later on and will relate them to D-brane moduli
and dualities. The simplest choice is to take
K to be a vector bundle. This leads to the
classical notion of a Higgs bundle.
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2. Higgs bundles

Let S be a a complex algebraic variety and let

K be a fixed algebraic vector bundle of rank n

on S. Consider a vector bundle E → S of rank

r and an OS-linear map

φ : E → E ⊗K.

We would like to take the ‘spectrum’ of φ and

recast the data (E, φ) in terms of a spectral

cover C of S possibly decorated with some

additional structure (e.g. a coherent sheaf).

Problem The spectrum may not be well defined

for a general φ.

Indeed, if we trivialize K locally on S, i.e. if we

choose a local frame K|V
∼= C

n ⊗OV , then we

see that locally φ comprises n endomorphims

φ|V = (φ1, . . . , φn), with φi ∈ Γ(V,End(E)).
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We can apply the naive spectral construction
to each φi but the collection of spectral covers
we will get this way will depend on the trivial-
ization of K.

To fix that one may look only at φ’s for which
all the φi’s behave in the same way e.g. are
simultaneously diagonalizable. More generally
we can require that [φi, φj] = 0 for all i, j, i.e.
that the φi’s generate a commutative
subalgebra in End(E). The latter condition
is clearly equivalent to requiring that

φ ∧ φ = 0 ∈ Γ(S,End(E)⊗
2∧
K).

This motivates the following

Definition A K-valued Higgs bundle on an
algebraic variety S is a pair

(E, φ : E → E ⊗K)

satisfying φ ∧ φ = 0.

Similarly one defines a Higgs coherent sheaf on
S.
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Observe that for a Higgs bundle (E, φ), the

Higgs field φ can be interpreted as a map

K∨ ⊗ E → E and so generates an action

TK∨ ⊗ E → E of the sheaf of tensor

algebras TK∨ := ⊕i(K∨)⊗i on E. The

condition φ∧φ = 0 is equivalent to saying that

this action descends to an action

S•K∨ ⊗ E → E

of the symmetric algebra S•K∨ on E.

This fact admits a geometric interpretation.

Consider the total space X := tot(K) of the

vector bundle K. Let p : X → S be the natural

projection. Then p is an affine map and

p∗OX = S•K∨, X = Spec(S•K∨).

In particular, a quasi-coherent sheaf E on X

is the same thing as a quasi-coherent sheaf

E(= p∗E ) on S together with a S•K∨-action.
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Note that since p is affine, an S•K∨-module E

which is coherent as a sheaf on S will

correspond to a coherent sheaf E on X which

is finite over S. In other words we have an

equivalence of categories

p∗ :
{

quasi-coherent

sheaves on X

}
→̃


Sheaves of S•K∨

modules on S, quasi-

coherent as sheaves of

OS-modules


which restricts to an equivalence

p∗ :
{

coherent sheaves

on X, finite over S

}
→̃
{

Higgs coherent

sheaves on S

}
.

This is the K-valued spectral correspondence.

It converts spectral data (= coherent sheaves

on tot(K) whose support is finite over S) to

Higgs data (= K-twisted families of endomor-

phisms on S).
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Remark: • The Higgs sheaf (E, φ)
corresponding to a sheaf E on X can be
described explicitly:

E = p∗E is the pushforward of E ,
φ : E → E ⊗ K is the pushforward of

E
⊗λ→ E ⊗ p∗K where, λ ∈ Γ(tot(K), p∗K) is the

tautological section.

• If a sheaf E on X corresponds to a Higgs
bundle (E, φ) of rank r, then the spectral cover
for (E, φ) is defined as the subscheme
Supp(E ) ⊂ X which maps onto S and is
finite of degree r over S. It is given
explicitly as the zero locus of the section

det(λ · id−p∗φ) ∈ Γ(X, p∗SrK).

• When K is the trivial line bundle on S, then
X = S×C and we recover the old definition of a
spectral cover for a family of endomorphisms.
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3. D-branes and Higgs bundles

The spectral correspondence is a simple geometric

duality which can be used to describe D-branes.

Setup 1: Let (S, g) be a compact Kähler manifold with g

real-analytic, K = Ω1
S the holomorphic cotangent bun-

dle of S. The total space X = tot(K) of K carries

a holomorphic symplectic form - the exterior derivative

Ω = dλ of the tautological one form λ on X. It is known

(B.Feix’99, D.Kaledin’99) that a tubular neighborhood

of the zero section S ⊂ X of K supports a unique hyper-

Kähler metric which is compatible with Ω and restricts

to g on S. Thus X is a non-compact, non-complete

physicists Calabi-Yau manifold which can be taken as a

string background.

The B-branes on X are coherent sheaves on X with

compact support, i.e. coherent sheaves E on X which

are finite over S. By the spectral correspondence one

can describe the moduli space of such E as the moduli

space of Higgs bundles (E, φ : E → E ⊗Ω1
S) on S. If the

Chern classes of E are chosen so that c1(E) = 0 and

c2(E) = 0, then all such Higgs bundles correspond to

representations of π1(S) by C.Simpson’s theory.

This gives a concrete description of a component of

the moduli space of B-branes on X.
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Setup 2: Let Z be a three dimensional compact Calabi-

Yau manifold. Let C ⊂ Z be a smooth

rigid curve in Z. In M-theory one is interested in the

moduli space BPS(Z,C, r) of BPS states on Z of charge

r · [C] ∈ H2(Z,Z). Geometrically BPS(Z,C, r) should

parameterize torsion sheaves on Z whose support

represents the homology class r · [C].

Note: This problem is not very well posed - the

corresponding quot scheme is not of finite type.

On the other hand Gopakumar-Vafa gave an explicit

formula (see hep-th/9812127) expressing the

Euler characteristic of the space BPS(Z,C, r) in terms

of finitely many GW invariants in the homology class

r · [C].

Question: What is this formula really calculating?

One possible answer suggested by the perturbative

nature of the Gopakumar-Vafa calculation is that in fact

the space BPS(Z,C, r) should be linearized in a suitable

way before we start counting.
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Proposal: Replace the global Calabi-Yau Z by its

linearization near C, i.e. by the local Calabi-Yau

X := tot(NC/Z),

with C sitting inside X as the zero section.

Now we have a natural projection p : X → C and the

space BPS(X,C, r) is just the moduli space of

coherent sheaves on X, which are finite and of degree r

over C. By the spectral correspondence we can identify

BPS(X,C, r) with the moduli of rank r Higgs bundles

(E, φ : E → E ⊗ NC/Z) on C which is much simpler. In

particular, one can utilize the natural C×-action on Higgs

bundles:

t · (E, φ) := (E, tφ), for all t ∈ C×,

and try to localize the calculation of the Euler

characteristic of BPS(X,C, r) at the fixed locus of C×.
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