Higgs bundles and D-branes - 1

KITPO3, Santa Barbara
August 2003



e Review of the spectral construction

e Higgs bundles

e D-branes and Higgs bundles



1. Review of spectral covers

Common strategy in mathematics: search for
a duality operation that will simplify a given
problem.

Example: Fourier transform for functions on
a locally compact abelian group. Gives a way
of converting between continuous and discrete
data.

The spectral cover construction is another
example. Rougly this is a duality operation
which aims to replace a linear operator by its
spectrum.



Simplest setup: Let V be a finite dimensional
C-vector space and let ¢ : V — V be an
endomorphism.

When ¢ is generic (=diagonalizable) one can
describe ¢ via its spectral data, i.e. by giving:

e the eigenvalues of ¢;

e the decomposition of V into a direct sum
of ¢-eigenlines;

e a mathcing between eigenvalues and
eigenlines.

If dimg V. = n this means that we are specifying
n complex numbers

A,....,Axn € C (= spectrum of ¢)

and to each such number we are prescribing a
line L, CV,sothat L1 &... & Lp,=V.



The spectral covers appear when we let this
picture vary in families.

If ¢ : V — V is a family of endomorphisms
parameterized by s € S, then by repeating the
construction for each s we get a subvariety
S C S x C, where

S ={(s,\)| X\ is an eigenvalue of ¢s}

If all ¢s have distinct eigenvalues we also get
a family of eigenlines L, )y parameterized by
the points of S.

The space S is called the spectral cover
corresponding to the family {¢s}scg. Under
the genericity assumption S is an unramified
n-sheeted cover of S and it carries a line
bundle consisting of all eigenvalues of the ¢g's.

Note: The data (S — S,L — S) completely
reconstructs the family {¢s}scs.



The correspondence {¢s}scg < (S,L) is not
very useful under the genericity assumption. In
applications one needs to deal with ¢s which
have repeated eigenvalues. In this case S — S
becomes ramified over s € S and the fibers of
L — S may jump at the multiple valued points.

Thus one expects some kind of a sheaf
structure for L along the ramification locus of
S — S.

Important special case: Allow ¢s to have
multiple eigenvalues but require that there is
exactly one Jordan block per eigenvalue.

Such an endomorphism of V is called regular.
It carries a single eigenline per eigenvalue. In
particular if all ¢s, s € S are regular we get
again a line bundle L — S on the spectral cover
S.



More invariantly, consider the polynomial map

h: End(V) cn
¢'—>(CL1(¢), IR CLn(Qb)),
where the a;(¢)’'s are the coefficients
det(t-idy —¢) =t" + a1(®)t" t + ... + an(9).

of the characteristic polynomial of ¢.

The spectrum of ¢ depends only on h(¢) and
so S is just the pullback via the map

S (L
¢s—h(ps).
of the obvious cover
C'cC'xC—C",
given by the equation t"+a1t" 1 4+...+ap =0
in the coordinates (aq1,...,an;t) € C"* x C.
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The fibers of h : End(V) — C"™ are invariant
under conjugation action of GL(V') and in fact

C"=End(V)//GL(V)
is the GIT quotient.

Explanation: The orbits of the GL(V)-action
on End(V') are not all closed and so the natural
topology on the set of orbits End(V)/GL(V)
will not be Hausdorff. To remedy that one
looks for a space End(V)//GL(V) parameter-
izing the closures of GL(V)-orbits in End(V).

For a general (regular and semisimple) ¢ in
End(V) the GL(V)-orbit is closed and in a
neighborhood of such ¢ the quotients

End(V)/GL(V) and End(V)//GL(V)

coincide.
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When ¢ is arbitrary, then GL(V) - ¢ contains a
uniqgue closed and a unique open orbit.
The closed one is the orbit of a semisimple
(diagonalizable) endomorphism and the open
one is the orbit of a regular endomorphism.
This leads to

Two interpretations for End(V)//GL(V):
either as the space parameterizing semisim-
ple endomorphisms modulo conjugation, or as
the space parameterizing all regular endomor-
phisms modulo conjugation.

Both interpreations are useful but the one for
which the eigenlines vary 'continuosly’ is the
interpretation via regular endomorphisms.

Example: Let dimc(V) = 2. Use SL(V) instead of
GL(V). Then we have h : SL(V) — C, h(¢) = deto,
and if det¢ = 0, then ¢ is regular and semisimple. If
det ¢ = 0, then ¢ is nilpotent and then

o ={(g o) {525 5)}
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Extensions and generalizations

To make the simple-minded spectral cover
construction useful in applications one needs
to extend it in two ways:

(i) Allow for abitrary groups G, not only for
GL(V);
(ii) Allow for twisted versions of ¢.

For (i): Instead of looking at elements
¢ € End(V) we take elements ¢ € g for g :=
Lie(G) of some complex semi-simple group G.
The spectral cover construction in this case
iIs somewhat subtler since it has to reflect the
complexity of the group G. I will not discuss
this part of the story. For more details see Ron
Donagi’'s papers . ...



For (ii): The ‘twisting’ of the {¢s}scg Can be
achieved in two ways. Firstly, one can allow for
the vector space V to vary with the point s € S.
This is easily realized by replacing S x V by a
non-trivial vector bundle E on S. In this setup
the family of endomorphisms naturally should
be viewed as a section ¢ € I'(S,End(F)). Sec-
ondly, one can allow for ¢ to have nontrivial
coefficients in some coefficient object K.

The freedom of choosing K is essential in the
applications. Since the elements in K can be
thought of as the matrix coefficients of ¢, it is
natural to require that K has an abelian group
structure. Possible natural choices for K are:
a vector bundle on X, a family of affine tori on
X, a family of abelian varieties on X or more
generally a family of commutative group stacks
over X.

We will see examples of most of these choices
later on and will relate them to D-brane moduli
and dualities. The simplest choice is to take
K to be a vector bundle. This leads to the
classical notion of a Higgs bundle.



2. Higgs bundles

Let S be a a complex algebraic variety and let
K be a fixed algebraic vector bundle of rank n
on S. Consider a vector bundle E — S of rank
r and an Og-linear map

6 FE— E®K.

We would like to take the ‘spectrum’ of ¢ and
recast the data (F,¢) in terms of a spectral
cover (' of S possibly decorated with some
additional structure (e.g. a coherent sheaf).

Problem The spectrum may not be well defined
for a general ¢.

Indeed, if we trivialize K locally on S, i.e. if we
choose a local frame K, = C"® Oy, then we
see that locally ¢ comprises n endomorphims

¢y = (91,...,Pn), wWith ¢; € I'(V,End(E)).



We can apply the naive spectral construction
to each ¢; but the collection of spectral covers
we will get this way will depend on the trivial-
ization of K.

To fix that one may look only at ¢’s for which
all the ¢;'s behave in the same way e.g. are
simultaneously diagonalizable. More generally
we can require that [¢;,¢;] = O for all 4,7, i.e.
that the ¢;'s generate a commutative
subalgebra in End(FE). The latter condition
IS clearly equivalent to requiring that

2
$Ap=0¢cr (S EndE)\K).

This motivates the following

Definition A K-valued Higgs bundle on an
algebraic variety S is a pair

(F,¢ . FE— EQK)
satisfying ¢ A\ ¢ = 0.

Similarly one defines a Higgs coherent sheaf on
S.
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Observe that for a Higgs bundle (F,¢), the
Higgs field ¢ can be interpreted as a map
KY® E — E and so generates an action
TKY  E — E of the sheaf of tensor
algebras TKY = @;(KV)® on E. The
condition ¢ Ao = 0 is equivalent to saying that
this action descends to an action

S°KY®QFE — E

of the symmetric algebra S*KY on E.

This fact admits a geometric interpretation.
Consider the total space X := tot(K) of the
vector bundle K. Let p: X — S be the natural
projection. Then p is an affine map and

psOx = S°K VY, X = Spec(S°KY).

In particular, a quasi-coherent sheaf & on X
iIs the same thing as a quasi-coherent sheaf
E(= p«&) on S together with a S®*KV-action.
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Note that since p is affine, an S*KV-module E
which is coherent as a sheaf on S will
correspond to a coherent sheaf & on X which
is finite over S. In other words we have an
equivalence of categories

(Sheaves of S°KV)
quasi-coherent ) __ | modules on S, quasi-
Px . — <
sheaves on X coherent as sheaves of
| Os-modules )

which restricts to an equivalence

{coherent sheaves} . {Higgs coherent}
Px - . — :
on X, finite over S

sheaves on S

This is the K-valued spectral correspondence.
It converts spectral data (= coherent sheaves
on tot(K) whose support is finite over S) to
Higgs data (= K-twisted families of endomor-
phisms on S).
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Remark: e The Higgs sheaf (F,o)
corresponding to a sheaf & on X can be
described explicitly:

E = p«& is the pushforward of &,

o . FE — E ® K is the pushforward of

& %2 & @ p* K where, A € M(tot(K),p*K) is the
tautological section.

e If a sheaf & on X corresponds to a Higgs
bundle (E, ¢) of rank r, then the spectral cover
for (F,¢) is defined as the subscheme
Supp(&) C X which maps onto S and is
finite of degree r over S. It is given
explicitly as the zero locus of the section

det(\ - id —p*¢) € M(X, p*S"K).

e When K is the trivial line bundle on S, then
X = SxC and we recover the old definition of a
spectral cover for a family of endomorphisms.
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3. D-branes and Higgs bundles

The spectral correspondence is a simple geometric
duality which can be used to describe D-branes.

Setup 1: Let (S, g) be a compact Kahler manifold with g
real-analytic, K = Qé the holomorphic cotangent bun-
dle of S. The total space X = tot(K) of K carries
a holomorphic symplectic form - the exterior derivative
€2 = d\ of the tautological one form A on X. It is known
(B.Feix'99, D.Kaledin'99) that a tubular neighborhood
of the zero section S C X of K supports a unique hyper-
Kahler metric which is compatible with €2 and restricts
to g on S. Thus X is a non-compact, non-complete
physicists Calabi-Yau manifold which can be taken as a
string background.

The B-branes on X are coherent sheaves on X with
compact support, i.e. coherent sheaves & on X which
are finite over S. By the spectral correspondence one
can describe the moduli space of such & as the moduli
space of Higgs bundles (E,¢: E — E® QL) on S. If the
Chern classes of & are chosen so that c¢;(E£) = 0 and
c2(E) = 0, then all such Higgs bundles correspond to
representations of w1(S) by C.Simpson’s theory.

This gives a concrete description of a component of
the moduli space of B-branes on X.
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Setup 2: Let Z be a three dimensional compact Calabi-
Yau manifold. Let C C Z Dbe a smooth
rigid curve in Z. In M-theory one is interested in the
moduli space BPS(Z,C,r) of BPS states on Z of charge
r- [C] € Hx(Z,Z). Geometrically BPS(Z,C,r) should
parameterize torsion sheaves on Z whose support
represents the homology class r - [C].

Note: This problem is not very well posed - the
corresponding quot scheme is not of finite type.

On the other hand Gopakumar-Vafa gave an explicit
formula  (see  hep-th/9812127) expressing the
Euler characteristic of the space BPS(Z,C,r) in terms
of finitely many GW invariants in the homology class
r-[C].

Question: What is this formula really calculating?

One possible answer suggested by the perturbative
nature of the Gopakumar-Vafa calculation is that in fact
the space BPS(Z,C,r) should be linearized in a suitable
way before we start counting.
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Proposal: Replace the global Calabi-Yau Z by its
linearization near C', i.e. by the local Calabi-Yau

X := tot(Nez),

with C sitting inside X as the zero section.

Now we have a natural projection p : X — C and the
space BPS(X,C,r) is just the moduli space of
coherent sheaves on X, which are finite and of degree r
over C. By the spectral correspondence we can identify
BPS(X,C,r) with the moduli of rank r Higgs bundles
(E,¢: E — E® N¢g/z) on C which is much simpler. In
particular, one can utilize the natural C*-action on Higgs
bundles:

t-(E,¢) .= (E,tp), for all t e C*,

and try to localize the calculation of the Euler
characteristic of BPS(X, C,r) at the fixed locus of C*.
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