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Atomic clocks and atom interferometers

Optical lattice 
clocks

Atom 
interferometers

• How can we leverage the incredible gains in stability and 
accuracy of clocks for fundamental physics?

• Atomic clocks and interferometers offer the potential for 
gravitational wave detection in an unexplored frequency range

• Development of new “clock” atom interferometer inertial 
sensors based on narrow optical transitions

Kolkowitz et al., PRD 2016

Hogan et al., PRA 2016
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Long baseline atom interferometry science

Tests of quantum mechanics at macroscopic scales

Ultralight wave-like dark matter probe

Mid-band gravitational wave detection

• Meter-scale wavepacket separation, duration of seconds
• Decoherence, spontaneous localization, non-linear QM, …

Mid-band:  0.03 Hz to 3 Hz

• LIGO sources before they reach LIGO ban
• Multi-messenger astronomy: optimal band 

for sky localization
• Cosmological sources

Rb wavepackets
separated by 54 cm

• Mass <10-14 eV (Compton frequency in ~Hz 
range)

• Scalar- and vector-coupled DM candidates
• Time-varying energy shifts, EP-violating new 

forces, spin-coupled effects
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Sky position determination

λ

Sky localization 
precision:

Mid-band advantages
- Small wavelength λ
- Long source lifetime 

(~months) maximizes 
effective R

Images: R. Hurt/Caltech-JPL; 2007 Thomson Higher Education

R

Graham et al., PRD 024052 (2018).
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Gravitational Wave Detection

Megaparsecs…

L (1 + h sin(ωt ))

strain

frequency

LIGO

• LIGO and other optical interferometers 
use two baselines

• In principle, only one is required

• Second baseline needed to reject laser 
technical noise
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MAGIS concept

Matter wave Atomic Gradiometer Interferometric Sensor

1. Inertial references
• Freely-falling objects, separated by some baseline
• Must be insensitive to perturbations from non-gravitational forces

2. Clock
• Used to monitor the separation between the inertial references
• Typically measures the time for light to cross the baseline, via 

comparison to a precise phase reference (e.g. a clock).

Passing gravitational waves cause a small modulation in the distance between objects.
Detecting this modulation requires two ingredients:

In MAGIS, atoms play both roles. 

Atom as “active” proof mass: Atomic coherence records laser phase, avoiding the 
need of a reference baseline – single baseline gravitational wave detector.
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Clock atom interferometry

Excited state phase evolution:
Two ways for phase to vary:

Gravitational wave

Dark matter

Graham et al., PRL 110, 171102 (2013).
Arvanitaki et al., PRD 97, 075020 (2018).

New kind of atom 
interferometry using single-
photon transitions between 
long-lived clock states

(variations over time T)

Differential measurement (gradiometer) to suppress 
laser noise
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10-meter scale atom drop towers

Wuhan, China

Hannover, Germany
Stanford University

AION, 
UK
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Stanford 10-meter Sr prototype
10-m tower CAD model

Two Sr atom 
sources

Magnetic 
shield 

Two assembled Sr atom sources

Atom source CAD detail
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International efforts in long baseline atomic sensors

MIGA:  Matter Wave laser 
Interferometric Gravitation 

Antenna (France)

AION:  Atom 
Interferometer Observatory 
and Network (UK)

ZAIGA:  Zhaoshan Long-
baseline Atom Interferometer 

Gravitation Antenna (China)
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Matter wave Atomic Gradiometer Interferometric Sensor

• 100-meter baseline atom interferometry in existing shaft at Fermilab
• Intermediate step to full-scale (km) detector for gravitational waves
• Clock atom sources (Sr) at three positions to realize a gradiometer
• Probes for ultralight scalar dark matter beyond current limits (Hz range)
• Extreme quantum superposition states: >meter wavepacket separation, 
up to 9 seconds duration

10
0 

m
et

er
s

MAGIS-100: Detector prototype at Fermilab
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MAGIS-100 design

MINOS access shaft Sr atom 
sources

Modular section 
of 100 meter 

science region
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MAGIS-100 projected sensitivity

DM sensitivity 
(electron coupling)
Gradiometer

DM sensitivity (B-L 
coupling)
Compare isotopes

Gravitational wave sensitivity

State of 
the art

Long-term 
target
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MAGIS-style satellite detector

L = 4 × 107 meters

Satellite detector concept

• Two spacecraft

• Atom source in each

• Heterodyne laser link

• Resonant/LMT sequences

Example design

• Heterodyne link concept analogous to LISA (synthesize ranging between two 
test masses)

• Decouples atom-laser interaction strength from baseline length (diffraction limit)
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Full scale MAGIS projected GW sensitivity

• Mid-band GW sources detectable from ground and space
• Gravity gradient noise (GGN) likely limits any terrestrial detector at low frequencies

• Longer baselines available in space reduce requirements (e.g., LMT), but can impact 
frequency response at high frequencies

• Flexible detection strategies possible (broadband vs resonant) with different tradeoffs 
in sensitivity/bandwidth
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Development path

State of 
the art

MAGIS detector development

• Phase noise improvement strategy is a combination of increasing atom flux and 
using quantum entanglement (spin squeezing).

• LMT requirement is reduced in space proposals (longer baselines)

Reaching required sensitivity requires extensive technology development 
in three key areas:
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LMT atom optics on the clock transition

Single photon clock transitions
• Requires long-lived excited state
• Reduced spontaneous emission (other 

levels far detuned)
• Possibility to support > 106 pulses

5S2 1S0

5P 1P1

5P 3Pj

461 nm
30.5 MHz

689 nm
7.4 kHz

698 nm
1 mHz (87Sr)

~30 GHz Two-photon transitions
• Conventional atom interferometers use two-photon 

Raman or Bragg transitions
• Requires large detuning, high power to suppress 

spontaneous emission
• Current state of the art: ~100 pulses

>200 THz

Sr

Rb
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Clock atom interferometry demonstration

98.9% π-pulse efficiency
• Perform LMT atom optics using π pulses 

from alternating directions

• Each π pulse interacts with both arms due to 
high Rabi Frequency (+2 ħk)

J. Rudolph, PRL 124, 083604 (2020).
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LMT clock interferometer
Example: 51 ħk interferometer (100 total π pulses) 

First LMT clock interferometers 
using sequential single-photon 
transitions

1 ħk

51 ħk

Contrast loss prediction (not a fit) includes 
excited state decay (22 µs lifetime) + 

measured π-pulse efficiency

LMT in demo limited by available 
689 nm power (~100 mW)

J. Rudolph, PRL 124, 083604 (2020).
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Clock atom gradiometer demonstration

• Laser phase noise is common to the interferometers
• Demonstrated 81 ћk (power limited)
• Demonstrated T > 1 ms (>> lifetime)

Run two interferometers simultaneously

Correlated phases

J. Rudolph, PRL 124, 083604 (2020).
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Some challenges and open questions

• Scaling sensors from 10 m baseline to 100 m and then km-scale

• Space-based detectors: space qualification, TRL, etc.

• Incorporating quantum entanglement (spin-squeezing)

• High-flux atom sources

• Extreme LMT >1000 ћk

• Multiplexed interferometers for high sample rate applications

• Gravity gradient noise mitigation (terrestrial GW detection)
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