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Strongly coupled gauge fermion systems 
 
-  Could open up a whole new world of physical phenomena 

(technicolor related and other) 
-  They are inherently non-perturbative 
-  Lattice methods are the most reliable way to study them 
 
Disclaimer 
This is a relatively new field within lattice studies and we 
frequently generate more questions than what we solve. 
-   Progress is steady but do not expect final answers yet. 
 



Technicolor-inspired electroweak symmetry breaking 

Renormalization group β function at 2 loops 

Nf < 8.05                                                     8 < Nf < 16.5 



Few fermions: QCD like 
 

 
– Asymptotically free, chirally broken and confining  

– Technicolor:  
– pions are massless Goldstones 
   could describe EW symmetry breaking if 
       FTC~vEW ~250 GeV  (scaled-up QCD) 

– Extended technicolor: 
– add  techni & SM fermion coupling to 
generate mass for SM fermions    

Can get complicated when one tries to satisfy the EW precision data 



More fermions: conformal systems 

–  Asymptotically free 
–  at gFP the gauge coupling is  an irrelevant 
operator (Banks-Zaks IRFP) 

–  Conformal theory at the IRFP  
– No confinement 
– No chiral symmetry breaking 

 Conformal technicolor 
 Unparticle models 

The continuum theory defined at the IRFP is interesting on its own right: 
if it has non-trivial exponents (γm ≠ 0) it is a non-perturbative FP in 4D! 



The conformal window 

•  2-loop perturbation theory predicts IRFP when  Nf>8.05  
(b2<0 ,  (g*)2  = -b2/b1 ) 

 
 
 
 
 
•  Improved prediction from S-D equations 

As g increases the anomalous mass dimension γm also  increases 
–  if γm  < O(1) when g=gFP, an IRFP develops 
–  if γm = O(1) while g<gFP , chiral symmetry breaks, the fermions 

decouple, the system does not develop an IRFP 

γm = O(1) 



Walking technicolor 

 
The gauge coupling changes slowly and  
the anomalous mass dimension remains 
 large across an extended energy scale 
  
 
 
To satisfy electroweak precision data one needs                                 
      large                , but  small  
 
 
 
 
Scaled-up QCD does not do this  but walking TC could 
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Roadmap for the conformal window 

Needs non-perturbative verification! 

S-D type calculations 

Shaded: conformal 
Below : confining 
Above: IR free 
 
fermion representation: 
Fundamental 
Adjoint 
2Symmetric 
2Antisymm 
     

Nc 

Nf 



Strongly coupled systems are interesting 

An IR fixed point with large anomalous dimensions can describe 
− Walking TC 
− UV fixed points with non-perturbative properties 

 
But strongly coupled systems are non-perturbative 

− Perturbative methods are not reliable 
− We don’t even know what the physical fields are! 

Lattice simulations are designed to study non-pertubative systems 
–  We know how to do QCD 
–  SU(Nc) with Nf flavors – can it be much more difficult 



The lattice phase diagram 

QCD like 

conformal 

Conformal 

¯=6/g2 ¯=6/g2 

confining confining 

(arrows: UV to IR) 

Bulk phase transition 
(unphysical) 

Banks-Zaks 
 IRFP 

m m 

At       g=0, m=0, both couplings are relevant 
At       g=0, m=1, g is still relevant   



How can we  distinguish QCD-like and conformal systems? 

m 

QCD like 

m 

Lattice simulations can connect the perturbative FP and strong coupling 
•  Found IRFP ?  Done  ✔ 
•  No IRFP? Show that it is confining before a bulk transition is reached 

Conformal 

¯=6/g2 ¯=6/g2 

confining confining 

IRFP 

(arrows: UV to IR) 

bulk 



Finite temperature and bulk phase transitions 

m 

QCD like 

m 

In a conformal system  
•  finite temperature transitions run into a bulk (T=0) transition 
•  βbulk separates strong coupling (confining) and weak 

coupling (conformal) phases  

Conformal 

¯c ∞	
 as	
 NT  ∞ ¯c ¯bulk as	
 NT  ∞ 

confining 
confining 

IRFP bulk deconfined 

NT  4     8  16  32 .. NT  4     8  16  32 .. 



Finite temperature and bulk phase transitions 

In (some) conformal 
systems this phase diagram 
turns out to be quite a bit 
more complicated 

m 

Conformal 

¯c ¯bulk as	
 NT  ∞ 

confining 

IRFP bulk 

NT  4     8  16  32 .. 



Models: 
 
 
 
 
 
 
 
 
Many of these systems have been studied. Here I consider two :  
            SU(3) gauge + Nf = 12 and 8 fundamental flavors 
Nf=12 : quite controversial, was thought to be conformal for a while, than 
confining, than…….. 
Nf=8   : is considered confining, but something strange is happening…. 
 
Lattice action: improved (nHYP smeared) staggered fermions 

Nc 

Nf 



The multi-prong lattice approach 

•  Connect the perturbative and strongly coupled regime 
–  Calculate the RG ¯ function (the step scaling function)  

and look for a zero or the backward flow of the RG equation 
•  Schrodinger functional method 
•  Twisted Polyakov loop, Wilson loop ratio, etc 
•  Monte Carlo Renormalization Group (MCRG) 

•  Find bulk transition  
–  Study the phase diagram 

•  Scaling of hadronic & gluonic observables 
–  Observables scale differently in  conformal and confining systems 

Can this be distinguished from other systematical effects? 
•  Physical observables 

–  Anomalous dimension, S parameter 



The step scaling function around a UVFP 

The bare differential step scaling function sb (¯) 
 
              sb(¯)  = ¯ - ¯’  where   »(¯) = »(¯’)/2         (¯=2Nc/g02 )  

» is the correlation length defined by some physical mass 
–  Can be measured directly or 
–  Use RG flow : sb(¯) is the projection of the RG flow to a lower 

dimensional coupling space 

sb(¯) has the opposite sign of the RG ¯ function  
 



The MCRG method 

•  Under repeated blocking the RG flow lines approach the fixed point of 
the system in the irrelevant directions and flow away in the relevant 
ones. The speed of the flow is related to the scaling dimensions 

 
»=1 

Following the flow lines is 
very difficult 



The 2-lattice matching MCRG method 
 
•  2-lattice matching is a real-space MCRG.  
     It identifies the “projection” of the RG flow along the line (plane) of the 

simulation parameters in the gauge coupling : 
       

 

–  Do simulations at β and β’(m=0) 

–  RG block and compare the  blocked actions 

–  if S( β(n) )= S( β’(n-1) )  a(β)=a(β’)/2 

   the step scaling function is  

             sb(β )=limnb   1 (β - β ’) 
  



The step scaling function & MCRG 

If             S( β(n) )= S( β’(n-1) )      a(β)=a(β’)/2,  sb(β) = β-β 
MCRG finds (β,β’) pairs by matching blocked lattice actions 

action space 
Two actions are identical if all 
operator expectations values agree 

 

 

Match operators (local expectation 
values) after several blocking steps  



Where all the bodies are buried 
(and what to do with them) 

   
- The RG flow might not reach the renormalized trajectory 

-  Improved blocking is essential 
-  Compare different blocking levels 

- The blocked lattices are small, finite volume effects are significant 
-  Careful matching on identical volumes helps; 
-  Compare different volumes 

-  Spurious lattice fixed points can effect the results 
-  Check the phase structure 

 



Results for Nf = 12 flavors 

•  Improved actions : plaquette + negative adjoint plaquette gauge action 
to avoid a spurious FP. Results with  βA/βF = -0.25 and  βA/βF = -0.15.  

•  Improved blocking : HYP smeared 

•  Improved finite volume corrections:  
 2 levels of correction  

1st  order 

crossover 

ArXiv:1106.5293 



The step scaling function Nf = 12  

Results from many blocking levels, 
many volumes are all consistent. 
 
At βF=∞ the step scaling function sb>0  
 
In the investigated β range it is 
negative 
 
  There has to be an IRFP  

 (around/above β=11.0 )  
  Indicates a conformal system 



The step scaling function – a different action 

Sb(β) can be followed through the IRFP 
 
With βA/βF = -0.15 the IRFP is closer 
and I can find the IRFP  
                                    (168 4 matching)  



Summary of MCRG matching 

MCRG:  
requires matching on identical volumes for optimization  
With an action that avoids spurious fixed points 

–  Optimized, volume-matched MCRG gives consistent 
results for Δβ (the step scaling function) 

–  sb for Nf=12 fermions, SU(3) gauge is consistently 
negative, indicating an IRFP and conformal dynamics 

 



Phase diagram studies 

Nf=12 and 8 flavors, SU(3) gauge + nHYP’ fermions (arXiv:1111.2317) 
                                             (A. Cheng, A.H., G. Petropoulos,  D. Schaich) 
Why now? 

–  There is a contradiction between MCRG & spectral results.  
     We are investigating different coupling regions: 

•        MCRG :         6/g2 ~ 3.7 
•        LHC     :         6/g2 ~ 2.2 

 
The action: 

–  Fundamental-adjoint gauge : βA/βF = -0.25 
–   nHYP projection has numerical problems when the smeared link 

develops near-zero eigenvalues 
•  small tweak of the HYP parameters can fix that! 

(α1,α2,α3)=(0.40,0.50,0.50) will do the trick                                                 
 

 
 



Previous results on the phase stucture Nf=12  

Groningen-INFN group found 2 first order transitions         (2010,2011) 
m=0.025, NT=6,8, 10 and T=0                              (unimproved staggered) 

Indication of two first order transitions;  
Both transitions are running into a bulk trasition 
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Phase diagram  β-m plane Nf=12  

 
Finite temperature phase 
transitions converge to  zero 
temperature “bulk” transitions 
 
Results are consistent with 
Deuzeman et al. though we use a 
different lattice action 

First order transitions at small mass  
turning into crossover 



Phase diagram  β-m plane Nf=12  

m 

¯c ¯bulk as	
 NT  ∞ 

confining 

IRFP bulk 

NT  4     8  16  32 .. 

¯c ¯bulk as	
 NT  ∞ 

confining 

IRFP bulk 

NT  4     8  16  32 .. 

It is as the finite T transitions fissioned into two 
before converging to bulk transitions 



Phase diagram Nf=12  

What are the three  phases?      

Chiral condensate extrapolates to zero in the chiral limit on the  
weak coupling side of the “big” jump 
    Chiral restoring transition 
Is it deconfining? 

<ψψ>~ 10 m <ψψ>~ 5m 



Phase diagram 

Is it deconfining? Polyakov line is very noisy but the blocked Poly line is 
sensitive: 

The blocked Polyakov line sees the “weak” transition strongly 
but hardly changes at the “strong” transition   
No significant change with volume :compare 124 and 164 

Blocked Poly line is measured on RG 
blocked lattices: 

•   improved Poly line 
or 
•  Poly line on renormalized 

trajectory, after removing UV 
fluctuations  



Phase diagram 

Chirally symmetric, 
deconfined 

?
Chirally symmetric, 
    confining ? 

Chirally broken, 
confining 



The intermediate phase 

possibly only a lattice artifact (bordered by 1st order phase transitions) 
BUT 
      it does not go away with increasing volume, bordered by bulk     
      transitions 

 
its existence  is inconsistent with a QCD-like confining, chirally broken 
scenario. 
 
even if the IM phase is only a lattice artifact, it can shed light to 
symmetry breaking patterns of lattice fermions (think of the Aoki phase 
with Wilson fermions) 

BUT 
with the inclusion or some other operator a continuous transition & 
continuum limit might be reached. (?) 

 



Intermediate phase: 

Confining:  
- Polyakov line is small 
- Static potential on 123,163 volumes (no volume dependence!) 
  shows a linear term:    r0=2.1 – 2.7, √σ =0.40 --  0.48 

β=2.6 – IM phase 

β=2.7 – weak coupling  



Intermediate phase: 

Chirally symmetric:                    
-                       as m 0 
-  The meson spectrum is parity degenerate  
      (very different from a QCD-like spectrum with barely any finite volume       
       effects)   

!"" #$ 0



Intermediate phase: 

Weird property: single-site translational symmetry 
                   ψn  ψn+µ  , Un,µ  Un+µ,µ 
 is broken! 
Plaquette expectation value is “striped” 

t 

x 



Intermediate phase 

Translational symmetry breaking occurs at the fermionic level: 
 
 
                                                                                  Order parameter! 
 

! nUµ (n)! n+µ !! n+µUµ (n + µ)! n+2µ

n even 

n odd  



Intermediate phase 

It is a strange phase. 
-  It is not consistent with the perturbative g2 = 0 fixed point  
-  It has a small correlation length  
-  It does not closeoff  as the volume increases  only strange, 

forced scenarios can make it consistent with a QCD-like chirally 
broken continuum limit 

Chirally symmetric & confining phase is nor supposed to exist at all 
-  There is no continuum limit here (1st order transitions) 
-  Lattice might generate new relevant interactions  

 
Does it exist in any other system than Nf = 12?  

    No for Nf = 4  ✓ 



Intermediate phase with Nf = 8 

The phase diagram is eerily similar to Nf = 12 : 
2 transitions, converging (likely) to bulk ones, intermediate phase 

intermediate phase  
with the same properties as 
Nf = 12  



Intermediate phase with Nf = 16 

We don’t have the phase diagram but there is an intermediate phase: 

! nUµ (n)! n+µ !! n+µUµ (n + µ)! n+2µ

This is strange as 16 flavors 
 have no staggering at the 
level of the action! 



Conclusion: more questions than answers 

SU(3) gauge with Nf =12 fundamental flavors is the test case of BSM 
calculations: 

–  MCRG indicates an IRFP at relatively weak coupling 
–  The phase structure in the strong coupling is complicated 

•  There are two sets of phase transitions 
•  The finite temperature phase transitions are limited by bulk 

transitions 
•  The intermediate phase that is chirally symmetric but confining 
•  The intermediate phase break single-site translational symmetry  

–  This is inconsistent with QCD-like behavior, again suggesting 
conformality 

Nf = 8, 16 systems show the same IM phase – is this an indication of IR 
conformality? 


