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 Motivation
How does the nucleon force depend on the value!
of the quark masses?

— interesting on its own

— nuclear physics could be dramatically diffe-!
     rent for Mπ ≠ Mπphys (e.g. P-wave bound states) 

Bulgac, Miller, Strickman '97

— is QCD close to the infrared RG limit cycle?
Braaten, Hammer ’03; EE, Hammer, Meißner, Nogga ’06 

limit cycle. We argue below that this ultraviolet limit
cycle is a hint of an infrared limit cycle in QCD.

The low-energy few-nucleon problem can also be de-
scribed by an EFT that includes explicit pion fields as
well as contact interactions between the nucleons. This
EFT is applicable in a domain that hopefully extends to
momenta somewhat greater than m!. The renormaliza-
tion of the EFT with pions does not involve any RG limit
cycle. But this has no implications for the possible exis-
tence of an infrared RG limit cycle in QCD.

Our argument is based on recent work in which an EFT
with explicit pions was used to extrapolate nuclear forces
to the chiral limit of QCD [13–15]. In this limit, the
massesmu andmd of the up and down quarks are zero and
the pion is an exactly massless Goldstone boson associ-
ated with spontaneous breaking of the chiral symmetry
of QCD. According to these chiral extrapolations the
small binding energy 2.2 MeVof the deuteron is a fortu-
itous consequence of the physical values of mu and md.
When extrapolated to the chiral limit, the deuteron has a
much larger binding energy comparable to the scale
1=!mNr20" # 10 MeV set by the NN effective range.
Conversely, if extrapolated farther from the chiral limit,
the deuteron’s binding energy decreases to 0 and then it
becomes unbound. This effect is illustrated in Fig. 1,
which shows the chiral extrapolation of the inverse scat-
tering lengths 1=at and 1=as as functions of m! from
Ref. [15]. In the EFT with pions, the coefficients of some
of the 2-nucleon contact interactions are not constrained
by data. The bands in Fig. 1 are obtained by varying those
coefficients over natural ranges. The width of the error
band, of course, shrinks to zero at the physical value of
m!. The prediction of Ref. [15] is that the critical value
m!;t at which 1=at $ 0 is in the range 170 MeV<m!;t <
210 MeV, which is not much larger than the physical
value of m!. The extrapolation of 1=as has larger uncer-
tainties. It may increase to zero at some critical valuem!;s
greater than 150 MeV, in which case the spin-singlet
deuteron is bound for m! > m!;s, or it may remain nega-

tive, in which case the spin-singlet deuteron remains
unbound. Beane and Savage [14] have argued that the
extrapolation errors in the chiral limit are larger than
estimated in Ref. [15], but their errors agree for the small
extrapolation to the region of larger m! where the deu-
teron becomes unbound.

We now consider the chiral extrapolation of the three-
body spectrum. This could be calculated using an EFT
with explicit pions. Alternatively, the chiral extrapo-
lation can be calculated using the contact EFT of
Ref. [5]. The inputs required are as, at, and !% as func-
tions of m!, which can be calculated using an EFT with
pions. For the inverse scattering lengths 1=as and 1=at,
we take the central values of the error bands obtained
from the chiral extrapolation in Ref. [15]. The depen-
dence of !% on m! could be determined from the chiral
extrapolation of the triton binding energy using an EFT
with pions, but this has not yet been calculated. Like the
inverse scattering lengths, !% should vary smoothly with
m!. For small extrapolations of m! from its physical
value, we can approximate !% by a constant. We use the
value !% $ 189 MeV for m! $ 138 MeV obtained by
taking the triton binding energy as the three-body input.
In Fig. 2, we show the three-body spectrum in the triton
channel as a function of m!. The crosses give the bind-
ing momenta " $ !mB3"1=2 of the physical deuteron and
triton, while the dashed lines give the thresholds for
decay into a nucleon plus a deuteron (left curve) or a
spin-singlet deuteron (right curve) in the large-a approxi-
mation. The circles indicate the triton ground state and
excited state. In the region near m! # 175 MeV where
the decay threshold comes closest to the 3-nucleon
threshold " $ 0, an excited state of the triton appears.
The existence of this very shallow state is a hint that the

FIG. 1 (color online). The inverse scattering lengths 1=at and
1=as as functions of m! as predicted by the EFT with pions of
Ref. [15].
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FIG. 2 (color online). The binding momenta " $ !mB3"1=2 of
pnn bound states as a function of m! calculated using the
contact EFT of Ref. [5]. The circles indicate the triton ground
state and excited state. The crosses give the binding energy of
the physical deuteron and triton, while the dashed lines give the
thresholds for decay into a nucleon plus a deuteron (left curve)
or a spin-singlet deuteron (right curve).
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FIG. 2: Binding energies B3 of the triton ground state and the first two excited states as function of
the pion mass Mπ. The circles (ground state), squares (first excited state), and diamonds (second

excited state) give the chiral EFT result, while the dashed lines are calculations in the pionless
theory. The vertical dotted line indicates the critical pion mass M crit

π . The thresholds for the
three-body states are given by the solid lines.

and more shallow and finally becomes unbound at the critical mass. Above the critical pion
mass the deuteron exists as a shallow virtual state. In the spin-singlet channel, the situation
is reversed: the “spin-singlet deuteron” is a virtual state below the critical pion mass and
becomes bound above. The pion mass dependence of the two scattering lengths shown in
Fig. 1 will be used as input for the calculations in the contact EFT in the next section.

From the solution of the Faddeev equations with solution (a) for the NN potential, we
obtain the binding energies of the triton and the first two excited states in the vicinity of
the limit cycle (See Ref. [30] for details). The binding energies are given in Fig. 2 by the
circles (ground state), squares (first excited state), and diamonds (second excited state). The
solid lines indicate the neutron-deuteron (Mπ ≤ M crit

π ) and neutron-spin-singlet-deuteron
(Mπ ≥ M crit

π ) thresholds where the three-body states become unstable. Directly at the
critical mass, these thresholds coincide with the three-body threshold and the triton has
infinitely many excited states. The dashed lines are calculations in the pionless theory and
will be discussed in detail below. The binding energy of the triton ground state varies only
weakly over the whole range of pion masses and is about one half of the physical value at
the critical point. The excited states are influenced by the thresholds and vary much more
strongly.

In the remainder of this subsection, we calculate the expectation values of the 2N and
3N kinetic energies and some properties of the 2N and 3N wave functions. While these
quantities are technically not observables, they shed some light on the structure of the
three-body states.

In Fig. 3, we show the expectation values of the kinetic energy for the triton ground and
first excited states and for the two-nucleon states as a function of the pion mass Mπ. All
expectation values are evaluated in the rest frame of the corresponding states. The triton
ground state kinetic energy stays fairly constant as Mπ is varied. The kinetic energy of the
first excited state, however, approaches the kinetic energy of the two-nucleon bound state
(the deuteron for Mπ < M crit

π and the spin-singlet deuteron for Mπ > M crit
π ) near the value

8

NPLQCD; π-less EFT (Barnea et al)



 Motivation
— constraining possible time variation of the SM parameters: mq-dependence of the !
     nuclear force + nuclear physics + theory of BBN  + abundancies of light elements

Bedaque, Luu, Platter ’11, Berengut, EE, Flambaum, Hanhart, Meißner, Nebreda, Pelaez ’13

8THE TRIPLE-ALPHA PROCESS

c�ANU

• the 8Be nucleus is instable, long lifetime � 3 alphas must meet

• the Hoyle state sits just above the continuum threshold
� most of the excited carbon nuclei decay

(about 4 out of 10000 decays produce stable carbon)

• carbon is further turned into oxygen but w/o a resonant condition

⇥a triple wonder !

Testing the Anthropic Principle with Lattice Simulations – Ulf-G. Meißner – INT, Oct., 2012 · ⇥ ⇥ < ⇤ ⇤ > � •

EE, Krebs, Lähde, Lee, Meißner ’13— „anthropic considerations“ in connection with the Hoyle state

Fred Hoyle predicts a resonant state in 12C about 7.7 MeV above the 
ground state to explain carbon production in stars !
Hoyle, Astrophys. J. Suppl. 1 (1954) 121 

early 1953: 

summer 1953: resonant state at 7.68 ± 0.03 MeV measured at the Kellogg Radiation Lab  !
Dunbar, Pixley, Wenzel, Whaling, Phys. Rev. 92 (1953) 649 

For a critical discussion of a possible anthropic significance of Hoyle’s discovery see: 
Kragh, „An anthropic myth: Fred Hoyle’s carbon-12 resonance level“, Arch. Hist. Exact Sci. 64 (210) 721

Changing     by ~100 keV destroys production 
of either 12C or 16O
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Livio et al.’89;  Oberhummer, et al.’00
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How robust is     with respect to variations of 
the light quark mass?
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 Nuclear chiral EFT
The long-standing challenge of ab-initio calculation of the Hoyle state (as a 12-nucleon 
system) has been solved recently EE, Krebs, Lee, Meißner, PRL 106 (2011) 192501

This opens the way for studying the (linear) response of ε to small variations of the light 
quark mass around the physical value EE, Krebs, Lähde, Lee, Meißner, PRL 110 (13) 112502; EPJA 49 (13) 82

The framework: chiral EFT
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- long-range force: explicit and implicit (    ,     ) quark mass dependence 
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negative values, except for those of Ref. [8] with large
errors. The earlier calculations [7,8] did not investigate the
volume dependence of ΔEL. More recent studies [2,3,5,6]
examined the dependence and estimated the infinite volume
value through extrapolations [3,5,6] or checked that there
is no significant volume dependence of ΔEL [2]. All the
recent results suggest that the ground states in both
channels are bound states. One exception is Ref. [6] where
the conclusion is not clear due to large errors.
While lattice results are mutually qualitatively consistent,

they differ from experiment in more than one aspects. For the
3S1 channel, the binding energy −ΔE∞ found in the lattice

calculations [2,3,5,6] is a factor 5 to 10 times larger than the
experimental value. Furthermore, we observe no tendency in
the binding energy to approach the experimental value, at
least over the pion mass range mπ ¼ 0.3–0.51 GeV. For the
1S0 channel, the bound state found in the lattice calculations
is absent in experiment. Furthermore, similarly to the 3S1
channel, the binding energy is almost flat in m2

π in the
interval mπ ¼ 0.30–0.51 GeV. It is not clear whether the
bound state observed in the lattice calculation becomes
unbound toward the physical mπ .

IV. CONCLUSION AND DISCUSSION

We have extended our previous nuclei calculation in
2þ 1 flavor QCD at mπ ¼ 0.51 GeV [3] to the lighter
quark mass corresponding to mπ ¼ 0.30 GeV and
mN ¼ 1.05 GeV. In order to suppress an exponential
increase of statistical errors at smaller mπ, we have carried
out a much larger number of measurements by a factor 12
and 5 for the case of the spatial extent of 4.3 fm (483) and
5.8 fm (643), respectively, compared to those for the mπ ¼
0.51 GeV case with the same volumes. We have found that
in all channels we have studied, 4He, 3He, and two-nucleon
3S1 and 1S0, the ground state is a bound state by investigating
the volume dependence of energy shift ΔEL. The binding
energies estimated for the infinite volume are as follows:
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FIG. 16 (color online). Same as Fig. 15, but for the 1S0 NN
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quark mass corresponding to mπ ¼ 0.30 GeV and
mN ¼ 1.05 GeV. In order to suppress an exponential
increase of statistical errors at smaller mπ, we have carried
out a much larger number of measurements by a factor 12
and 5 for the case of the spatial extent of 4.3 fm (483) and
5.8 fm (643), respectively, compared to those for the mπ ¼
0.51 GeV case with the same volumes. We have found that
in all channels we have studied, 4He, 3He, and two-nucleon
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negative values, except for those of Ref. [8] with large
errors. The earlier calculations [7,8] did not investigate the
volume dependence of ΔEL. More recent studies [2,3,5,6]
examined the dependence and estimated the infinite volume
value through extrapolations [3,5,6] or checked that there
is no significant volume dependence of ΔEL [2]. All the
recent results suggest that the ground states in both
channels are bound states. One exception is Ref. [6] where
the conclusion is not clear due to large errors.
While lattice results are mutually qualitatively consistent,

they differ from experiment in more than one aspects. For the
3S1 channel, the binding energy −ΔE∞ found in the lattice

calculations [2,3,5,6] is a factor 5 to 10 times larger than the
experimental value. Furthermore, we observe no tendency in
the binding energy to approach the experimental value, at
least over the pion mass range mπ ¼ 0.3–0.51 GeV. For the
1S0 channel, the bound state found in the lattice calculations
is absent in experiment. Furthermore, similarly to the 3S1
channel, the binding energy is almost flat in m2

π in the
interval mπ ¼ 0.30–0.51 GeV. It is not clear whether the
bound state observed in the lattice calculation becomes
unbound toward the physical mπ .

IV. CONCLUSION AND DISCUSSION

We have extended our previous nuclei calculation in
2þ 1 flavor QCD at mπ ¼ 0.51 GeV [3] to the lighter
quark mass corresponding to mπ ¼ 0.30 GeV and
mN ¼ 1.05 GeV. In order to suppress an exponential
increase of statistical errors at smaller mπ, we have carried
out a much larger number of measurements by a factor 12
and 5 for the case of the spatial extent of 4.3 fm (483) and
5.8 fm (643), respectively, compared to those for the mπ ¼
0.51 GeV case with the same volumes. We have found that
in all channels we have studied, 4He, 3He, and two-nucleon
3S1 and 1S0, the ground state is a bound state by investigating
the volume dependence of energy shift ΔEL. The binding
energies estimated for the infinite volume are as follows:
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negative values, except for those of Ref. [8] with large
errors. The earlier calculations [7,8] did not investigate the
volume dependence of ΔEL. More recent studies [2,3,5,6]
examined the dependence and estimated the infinite volume
value through extrapolations [3,5,6] or checked that there
is no significant volume dependence of ΔEL [2]. All the
recent results suggest that the ground states in both
channels are bound states. One exception is Ref. [6] where
the conclusion is not clear due to large errors.
While lattice results are mutually qualitatively consistent,

they differ from experiment in more than one aspects. For the
3S1 channel, the binding energy −ΔE∞ found in the lattice

calculations [2,3,5,6] is a factor 5 to 10 times larger than the
experimental value. Furthermore, we observe no tendency in
the binding energy to approach the experimental value, at
least over the pion mass range mπ ¼ 0.3–0.51 GeV. For the
1S0 channel, the bound state found in the lattice calculations
is absent in experiment. Furthermore, similarly to the 3S1
channel, the binding energy is almost flat in m2

π in the
interval mπ ¼ 0.30–0.51 GeV. It is not clear whether the
bound state observed in the lattice calculation becomes
unbound toward the physical mπ .

IV. CONCLUSION AND DISCUSSION

We have extended our previous nuclei calculation in
2þ 1 flavor QCD at mπ ¼ 0.51 GeV [3] to the lighter
quark mass corresponding to mπ ¼ 0.30 GeV and
mN ¼ 1.05 GeV. In order to suppress an exponential
increase of statistical errors at smaller mπ, we have carried
out a much larger number of measurements by a factor 12
and 5 for the case of the spatial extent of 4.3 fm (483) and
5.8 fm (643), respectively, compared to those for the mπ ¼
0.51 GeV case with the same volumes. We have found that
in all channels we have studied, 4He, 3He, and two-nucleon
3S1 and 1S0, the ground state is a bound state by investigating
the volume dependence of energy shift ΔEL. The binding
energies estimated for the infinite volume are as follows:
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negative values, except for those of Ref. [8] with large
errors. The earlier calculations [7,8] did not investigate the
volume dependence of ΔEL. More recent studies [2,3,5,6]
examined the dependence and estimated the infinite volume
value through extrapolations [3,5,6] or checked that there
is no significant volume dependence of ΔEL [2]. All the
recent results suggest that the ground states in both
channels are bound states. One exception is Ref. [6] where
the conclusion is not clear due to large errors.
While lattice results are mutually qualitatively consistent,

they differ from experiment in more than one aspects. For the
3S1 channel, the binding energy −ΔE∞ found in the lattice

calculations [2,3,5,6] is a factor 5 to 10 times larger than the
experimental value. Furthermore, we observe no tendency in
the binding energy to approach the experimental value, at
least over the pion mass range mπ ¼ 0.3–0.51 GeV. For the
1S0 channel, the bound state found in the lattice calculations
is absent in experiment. Furthermore, similarly to the 3S1
channel, the binding energy is almost flat in m2

π in the
interval mπ ¼ 0.30–0.51 GeV. It is not clear whether the
bound state observed in the lattice calculation becomes
unbound toward the physical mπ .
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5.8 fm (643), respectively, compared to those for the mπ ¼
0.51 GeV case with the same volumes. We have found that
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While lattice results are mutually qualitatively consistent,
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π in the
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Estimations based on chiral EFT ??
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FIG. 4. The deuteron binding energy as a function of the pion mass (from the physical value to
the chiral limit). We do not show values below mπ = 60 MeV since the deuteron can be both bound
and unbound. The shaded region corresponds to η = 1/5, −2.61 GeV−2 < d16 < −0.17 GeV−2,

and −1.54 GeV−2 < d18 < −0.51 GeV−2.

FIG. 5. The scattering length in the 3S1-channel as a function of the pion mass for
d16 = +1 GeV−2, η = 1/3 and d18 = −0.51 GeV−2.
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Figure 1: Deuteron binding energy as a function of the pion mass. The shaded
areas correspond to the allowed values. The light shaded band refers to the variation
of D̄3S1

using η3S1
= 1/4.3 and d̄16 = −1.23 GeV−2, d̄18 = −0.97 GeV−2. The dark

shaded band gives the uncertainty if, in addition to variation of D̄3S1
, the LEC d̄16

is varied in the range from d̄16 = −0.17 GeV−2 to d̄16 = −2.61 GeV−2. The heavy
dot shows the binding energy for the physical value of the pion mass.

where αI and βI are the known constants and Λ refers to the renormalization scale.#7 This
indicates that the Mπ–dependence of the leading TPE is as important as the Mπ–dependence
of the short–range terms in eq. (4). It is, therefore, not clear, why the authors of [3], [5] decided
to neglect the explicit Mπ–dependence of the TPE as well as the second term in eq. (4) and to
keep only the first term in that equation.

6) The authors of [5] claim to be able to reproduce our results using the same input parameters. As
we just showed with respect to the discussion of their Fig. 4, we are not able to reproduce theirs.
In particular, we obtain for the deuteron binding energy in the chiral limit: BCL

D = 9.6+4.4
−3.2

+5.7
−2.4

MeV, where the uncertainties for D̄3S1
(the first error) and d̄16 (the second error) are taken

from [5] or are even slightly larger, i.e.: η3S1
= 1/4.3; −2.61GeV−2 < d̄16 < −0.17GeV−2.

As already pointed out, we do not consider a variation in d̄18 as relevant here, and, therefore,
have not plotted the corresponding bands in Fig. 1. For the sake of completeness, we however
calculated the resulting additional uncertainty in the chiral limit value of the deuteron binding
energy. Note that the LEC d̄18 does not contribute to the OPE in the chiral limit (where the
Goldberger-Treiman relation is exact) and thus changing d̄18 only affects BCL

D indirectly, due
to corresponding small changes in the LECs related to contact interactions, as explained in
[1]. Variation of d̄18 in the range −1.54GeV−2 < d̄18 < −0.51GeV−2 in addition to variation of

#7Similar terms also arise from renormalization of the short–range interactions by pion loops.
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Pion mass dependence of the deuteron BE at NLO

(large uncertainty mainly due to the lack of knowledge of mq-dependent short-range LECs…) 
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the range d̄16 = �0.91 . . . � 2.61 GeV�2, see Ref.[26]. The light shaded band results from a 10%

variation of the lattice point used to fix the order-Q4 counter term in Eq. (3.5).

leading (i.e. order O(M2
�)) correction to its value at the chiral limit and adopting the value

for the low-energy constant d̄16 = �1.76 GeV�2 obtained from the reaction �N ⇥ ��N

[26] leads to a very strong quark-mass dependence of gA near the physical point. On the

other hand, lattice QCD calculations indicate that the behavior of gA with M� is rather

flat. As discussed in Ref. [25], such a flat behavior of gA consistent with the lowest-mass

lattice data point from Ref. [24] corresponding to M� = 353 MeV 3 can, in principle, be

achieved at the two-loop level. In order to provide an accurate representation of the quark
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Figure 3: Quark mass dependence of the deuteron binding energy (left panel), and inverse 1S0/3S1 neutron-
proton scattering lengths (middle/right pannel). Shaded bands correspond to the N2LO analysis of Ref. [28]
as explained in the text. Also shown are leading-order cutoff-independent results of Refs. [13, 29].

ing energy E2H and S-wave scattering lengths a1S0, a3S1. This is not only of considerable interest
for ongoing and upcoming lattice-QCD calculations, but also for searches of a possible spatial
and temporal variation of fundamental constants in nature [21] and questions related to anthropic
considerations, see also section 4. The mq-dependence of NN S-wave phase shifts and E2H was
analyzed at NLO in Ref. [22], see also Ref. [23] for a calculation using the power counting scheme
of Ref. [24], which relies on a perturbative treatment of 1⇥-exchange, and more recent related
studies [25, 26]. The common problem in all these calculations is the lack of knowledge about
the mq-dependence of NN contact interactions. Estimating the size of the corresponding LECs by
means of dimensional analysis leads to a very large uncertainty for chiral extrapolations of E2H,
a1S0 and a3S1. In addition, there are indications that the chiral expansion of the short-range part of
the NN force might converge slowly in the heavy-baryon approach due to the appearance of the
momentum scale

�
M⇥mN associated with radiative pions [27]. To overcome these difficulties, the

recent N2LO analysis of Ref. [28] made use of the fact that the LECs accompanying NN contact
interactions are saturated by heavy-meson exchanges [30, 31]. Using a unitarized version of ChPT
in combination with lattice-QCD results to describe the mq-dependence of meson resonances sat-
urating these LECs, the mq-dependence of NN observables was analyzed at N2LO without relying
on the chiral expansion of the short-range NN force, see Fig. 3. This allowed us to considerably
reduce the theoretical uncertainty as compared to the earlier calculations. Extending these results to
light nuclei and comparing observed and calculated primordial deuterium and helium abundances
yields a stringent limit on a variation of the light quark mass, �mq/mq = 0.2± 0.04, see also the
related earlier calculation in Ref. [21]. While the calculated chiral extrapolations for E2H are con-
sistent with our earlier analysis in [22] as well as with the recent phenomenological calculation of
Ref. [32], unquenched lattice-QCD results of the NPLQCD Collaboration [33] seem to indicate an
opposite trend with a stronger-bound deuteron at large values of mq. It is not clear at this stage
whether there is any contradiction since the lattice results are so far only available at rather large
pion masses with M⇥ > 353.7 MeV, see [1]. Using the available lattice data in conjunction with the
(presumably unrealistic) assumptions of (i) perturbativeness of the 1⇥-exchange potential in the
3S1-3D1 channel and (ii) validity of the chiral expansion for NN scattering at such large values of
M⇥ leads to a qualitatively different dependence of E2H on mq [25, 26].
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of Ref. [24], which relies on a perturbative treatment of 1⇥-exchange, and more recent related
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the mq-dependence of NN contact interactions. Estimating the size of the corresponding LECs by
means of dimensional analysis leads to a very large uncertainty for chiral extrapolations of E2H,
a1S0 and a3S1. In addition, there are indications that the chiral expansion of the short-range part of
the NN force might converge slowly in the heavy-baryon approach due to the appearance of the
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M⇥mN associated with radiative pions [27]. To overcome these difficulties, the

recent N2LO analysis of Ref. [28] made use of the fact that the LECs accompanying NN contact
interactions are saturated by heavy-meson exchanges [30, 31]. Using a unitarized version of ChPT
in combination with lattice-QCD results to describe the mq-dependence of meson resonances sat-
urating these LECs, the mq-dependence of NN observables was analyzed at N2LO without relying
on the chiral expansion of the short-range NN force, see Fig. 3. This allowed us to considerably
reduce the theoretical uncertainty as compared to the earlier calculations. Extending these results to
light nuclei and comparing observed and calculated primordial deuterium and helium abundances
yields a stringent limit on a variation of the light quark mass, �mq/mq = 0.2± 0.04, see also the
related earlier calculation in Ref. [21]. While the calculated chiral extrapolations for E2H are con-
sistent with our earlier analysis in [22] as well as with the recent phenomenological calculation of
Ref. [32], unquenched lattice-QCD results of the NPLQCD Collaboration [33] seem to indicate an
opposite trend with a stronger-bound deuteron at large values of mq. It is not clear at this stage
whether there is any contradiction since the lattice results are so far only available at rather large
pion masses with M⇥ > 353.7 MeV, see [1]. Using the available lattice data in conjunction with the
(presumably unrealistic) assumptions of (i) perturbativeness of the 1⇥-exchange potential in the
3S1-3D1 channel and (ii) validity of the chiral expansion for NN scattering at such large values of
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for ongoing and upcoming lattice-QCD calculations, but also for searches of a possible spatial
and temporal variation of fundamental constants in nature [21] and questions related to anthropic
considerations, see also section 4. The mq-dependence of NN S-wave phase shifts and E2H was
analyzed at NLO in Ref. [22], see also Ref. [23] for a calculation using the power counting scheme
of Ref. [24], which relies on a perturbative treatment of 1⇥-exchange, and more recent related
studies [25, 26]. The common problem in all these calculations is the lack of knowledge about
the mq-dependence of NN contact interactions. Estimating the size of the corresponding LECs by
means of dimensional analysis leads to a very large uncertainty for chiral extrapolations of E2H,
a1S0 and a3S1. In addition, there are indications that the chiral expansion of the short-range part of
the NN force might converge slowly in the heavy-baryon approach due to the appearance of the
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M⇥mN associated with radiative pions [27]. To overcome these difficulties, the

recent N2LO analysis of Ref. [28] made use of the fact that the LECs accompanying NN contact
interactions are saturated by heavy-meson exchanges [30, 31]. Using a unitarized version of ChPT
in combination with lattice-QCD results to describe the mq-dependence of meson resonances sat-
urating these LECs, the mq-dependence of NN observables was analyzed at N2LO without relying
on the chiral expansion of the short-range NN force, see Fig. 3. This allowed us to considerably
reduce the theoretical uncertainty as compared to the earlier calculations. Extending these results to
light nuclei and comparing observed and calculated primordial deuterium and helium abundances
yields a stringent limit on a variation of the light quark mass, �mq/mq = 0.2± 0.04, see also the
related earlier calculation in Ref. [21]. While the calculated chiral extrapolations for E2H are con-
sistent with our earlier analysis in [22] as well as with the recent phenomenological calculation of
Ref. [32], unquenched lattice-QCD results of the NPLQCD Collaboration [33] seem to indicate an
opposite trend with a stronger-bound deuteron at large values of mq. It is not clear at this stage
whether there is any contradiction since the lattice results are so far only available at rather large
pion masses with M⇥ > 353.7 MeV, see [1]. Using the available lattice data in conjunction with the
(presumably unrealistic) assumptions of (i) perturbativeness of the 1⇥-exchange potential in the
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Figure 3: Quark mass dependence of the deuteron binding energy (left panel), and inverse 1S0/3S1 neutron-
proton scattering lengths (middle/right pannel). Shaded bands correspond to the N2LO analysis of Ref. [28]
as explained in the text. Also shown are leading-order cutoff-independent results of Refs. [13, 29].

ing energy E2H and S-wave scattering lengths a1S0, a3S1. This is not only of considerable interest
for ongoing and upcoming lattice-QCD calculations, but also for searches of a possible spatial
and temporal variation of fundamental constants in nature [21] and questions related to anthropic
considerations, see also section 4. The mq-dependence of NN S-wave phase shifts and E2H was
analyzed at NLO in Ref. [22], see also Ref. [23] for a calculation using the power counting scheme
of Ref. [24], which relies on a perturbative treatment of 1⇥-exchange, and more recent related
studies [25, 26]. The common problem in all these calculations is the lack of knowledge about
the mq-dependence of NN contact interactions. Estimating the size of the corresponding LECs by
means of dimensional analysis leads to a very large uncertainty for chiral extrapolations of E2H,
a1S0 and a3S1. In addition, there are indications that the chiral expansion of the short-range part of
the NN force might converge slowly in the heavy-baryon approach due to the appearance of the
momentum scale

�
M⇥mN associated with radiative pions [27]. To overcome these difficulties, the

recent N2LO analysis of Ref. [28] made use of the fact that the LECs accompanying NN contact
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in combination with lattice-QCD results to describe the mq-dependence of meson resonances sat-
urating these LECs, the mq-dependence of NN observables was analyzed at N2LO without relying
on the chiral expansion of the short-range NN force, see Fig. 3. This allowed us to considerably
reduce the theoretical uncertainty as compared to the earlier calculations. Extending these results to
light nuclei and comparing observed and calculated primordial deuterium and helium abundances
yields a stringent limit on a variation of the light quark mass, �mq/mq = 0.2± 0.04, see also the
related earlier calculation in Ref. [21]. While the calculated chiral extrapolations for E2H are con-
sistent with our earlier analysis in [22] as well as with the recent phenomenological calculation of
Ref. [32], unquenched lattice-QCD results of the NPLQCD Collaboration [33] seem to indicate an
opposite trend with a stronger-bound deuteron at large values of mq. It is not clear at this stage
whether there is any contradiction since the lattice results are so far only available at rather large
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⇤�mq

mq

����� < 0.0015

mq

Āt
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can be used to extrapolate the scattering amplitude in energy at fixed Mπ. 
No reliance on the chiral expansion: Mπ → ∞ limit well defined!



 Low-energy theorems for NN scattering
Use the conjectured linear Mπ-behavior of Mπ r(3S1) as input
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FIG. 4: Chiral extrapolation of the e↵ective range in the 3S1 partial wave suggested in Ref. [39]. Solid square and filled triangle
refer to the experimental value and he lattice-QCD result of that work, respectively.
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FIG. 5: NLO LET predictions for the pion mass dependence of the deuteron binding energy, the ratio �d/M⇡, the ratio a/r
and the first three shape parameters in the 3S1 partial wave assuming the linear M⇡-dependence of the e↵ective range as shown
in Fig. 4. Dark-shaded bands show our estimation of the uncertainty of the NLO LETs due to unknown M⇡-dependence of the
subleading short-range interaction, light-shaded bands depict the uncertainty in the linear extrapolation of the e↵ective range
used as input as shown in Fig. 4.
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TABLE II. Available experimental and infinite-volume lattice-QCD data for nucleon-nucleon scattering parameters and bound state energies
in the 1S0 and 3S1 channels at various values of the pion mass.

Mπ = 138 MeV Mπ = 300 MeV [42] Mπ = 390 MeV [36] Mπ = 510 MeV [38] Mπ = 800 MeV [40]

The 3S1 channel
Bd [MeV] 2.224 14.5(0.7)(+2.4

−0.7) 11(05)(12) 11.5(1.1)(0.6) 19.5(3.6)(3.1)(0.2)
a (fm) 5.42 Not given Not given Not given 1.82(+0.14

−0.13)(+0.17
−0.12)

r (fm) 1.75 Not given Not given Not given 0.906(+0.068
−0.075)(+0.068

−0.084)

The 1S0 channel
Bnn [MeV] – 8.5(0.7)(+2.2

−0.4) 7.1(5.2)(7.3) 7.4(1.3)(0.6) 15.9(2.7)(2.7)(0.2)
a (fm) −23.7 Not given Not given Not given 2.33(+0.19

−0.17)(+0.27
−0.20)

r (fm) 2.67 Not given Not given Not given 1.130(+0.071
−0.077)(+0.059

−0.063)

make predictions for the scattering length, shape parameters,
and the deuteron binding energy. Our results for the deuteron
binding energy Bd , the ratio γd/Mπ , where γd =

√
BdmN is

the deuteron binding momentum, the ratio a/r , and the first
three shape parameters M3

πv2, M5
πv3, and M7

πv4 are visualized
in Fig. 6. In this figure, the dark shaded bands result from
the variation of the constant β specified in Eq. (3.1) and
reflect the uncertainty of the NLO LETs.4 The light-shaded
bands correspond to the resulting uncertainty which emerges
from the theoretical uncertainty at NLO and the errors of
the linear interpolation of Mπ r(Mπ ) [see the left panel of
Fig. 5 and Eq. (4.1)] added in quadrature. Notice that we
also show in Fig. 6 the preliminary lattice-QCD result of the
NPLQCD collaboration at Mπ = 430 MeV [43]. Remarkably,
the linear Mπ dependence of Mπ r suggested in Ref. [40]
indeed appears to describe very well the common trend of
the lattice-QCD results for the deuteron binding energy at
intermediate pion masses. Also the NPLQCD Collaboration
results of Ref. [40] for Bd , γd/Mπ , a/r , and M3

πv2 at the
pion mass of Mπ = 800 MeV can be well described by
further extrapolating our results to heavier pion masses without
introducing any strong curvature. Assuming the validity of
Eq. (4.1) for pion masses below the physical one, we conclude
that the deuteron becomes unbound for Mπ ∼ 50 MeV. It is
also interesting to notice that the scattering length and the
shape parameters show strong variations with the pion mass
around and below the physical point. This nontrivial behavior
is driven by the long-range physics associated with the pion
exchange and is, in principle, testable in lattice QCD. The
obtained results for the quantities γd/Mπ and a/r , which
probe the amount of fine tuning in the NN system, suggest
that the physically realized value of the quark mass is close
to the point, which separates the strong fine-tuning regime
characterized by the rapidly growing scattering length from
the regime featuring a fairly small amount of fine tuning with
a/r = 2 . . . 3 within the large range of pion masses.

4Note that employing the scalar subleading potential in Eq. (2.15)
instead of the tensor one yields the results which are well within the
dark shaded band for all quantities except for the parameter v3 which
is relatively small and appears to be slightly outside of this band for
Mπ > 250 MeV.

We emphasize that the observed agreement between the
predicted Mπ dependence of the deuteron binding energy and
lattice-QCD results is a nontrivial consequence of the assumed
extrapolation of Mπ r . To illustrate this point, we consider an
alternative scenario by assuming that Mπ r is a linear function
of M2

π rather than of Mπ . Notice that while a linear in Mπ

dependence seems to be natural for NN observables, such a
scenario cannot be excluded a priori. Using the lattice-QCD
result of Ref. [40] for Mπ r at the pion mass of Mπ = 800 MeV,
the resulting interpolation formula takes the form,

Mπ r ∼= C(3S1)+D(3S1)M2
π , where C(3S1) =1.149+0.009

−0.009
+0.011
−0.009,

D(3S1) = 3.95+0.45
−0.49

+0.45
−0.55 GeV−2; (4.2)

see the right panel of Fig. 5. The resulting LET predictions
for the deuteron binding energy are shown in Fig. 7. The
assumed quadratic dependence on Mπ is clearly in conflict
with the lattice-QCD results and, therefore, appears to be
highly unlikely. Interestingly, the shape parameters seem to
be more robust with respect to the variation of the functional
form of r(Mπ ) and show a qualitatively similar behavior in
both scenarios.

Finally, as a last application of the LETs, we use the quoted
values of the deuteron binding energy to predict the scattering
length, effective range, and the first three shape parameters
at pion masses of Mπ = 300 MeV, Mπ = 390 MeV, and
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014001-10

V. BARU, E. EPELBAUM, A. A. FILIN, AND J. GEGELIA PHYSICAL REVIEW C 92, 014001 (2015)

TABLE II. Available experimental and infinite-volume lattice-QCD data for nucleon-nucleon scattering parameters and bound state energies
in the 1S0 and 3S1 channels at various values of the pion mass.

Mπ = 138 MeV Mπ = 300 MeV [42] Mπ = 390 MeV [36] Mπ = 510 MeV [38] Mπ = 800 MeV [40]

The 3S1 channel
Bd [MeV] 2.224 14.5(0.7)(+2.4
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−0.13)(+0.17
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make predictions for the scattering length, shape parameters,
and the deuteron binding energy. Our results for the deuteron
binding energy Bd , the ratio γd/Mπ , where γd =

√
BdmN is

the deuteron binding momentum, the ratio a/r , and the first
three shape parameters M3

πv2, M5
πv3, and M7

πv4 are visualized
in Fig. 6. In this figure, the dark shaded bands result from
the variation of the constant β specified in Eq. (3.1) and
reflect the uncertainty of the NLO LETs.4 The light-shaded
bands correspond to the resulting uncertainty which emerges
from the theoretical uncertainty at NLO and the errors of
the linear interpolation of Mπ r(Mπ ) [see the left panel of
Fig. 5 and Eq. (4.1)] added in quadrature. Notice that we
also show in Fig. 6 the preliminary lattice-QCD result of the
NPLQCD collaboration at Mπ = 430 MeV [43]. Remarkably,
the linear Mπ dependence of Mπ r suggested in Ref. [40]
indeed appears to describe very well the common trend of
the lattice-QCD results for the deuteron binding energy at
intermediate pion masses. Also the NPLQCD Collaboration
results of Ref. [40] for Bd , γd/Mπ , a/r , and M3

πv2 at the
pion mass of Mπ = 800 MeV can be well described by
further extrapolating our results to heavier pion masses without
introducing any strong curvature. Assuming the validity of
Eq. (4.1) for pion masses below the physical one, we conclude
that the deuteron becomes unbound for Mπ ∼ 50 MeV. It is
also interesting to notice that the scattering length and the
shape parameters show strong variations with the pion mass
around and below the physical point. This nontrivial behavior
is driven by the long-range physics associated with the pion
exchange and is, in principle, testable in lattice QCD. The
obtained results for the quantities γd/Mπ and a/r , which
probe the amount of fine tuning in the NN system, suggest
that the physically realized value of the quark mass is close
to the point, which separates the strong fine-tuning regime
characterized by the rapidly growing scattering length from
the regime featuring a fairly small amount of fine tuning with
a/r = 2 . . . 3 within the large range of pion masses.

4Note that employing the scalar subleading potential in Eq. (2.15)
instead of the tensor one yields the results which are well within the
dark shaded band for all quantities except for the parameter v3 which
is relatively small and appears to be slightly outside of this band for
Mπ > 250 MeV.

We emphasize that the observed agreement between the
predicted Mπ dependence of the deuteron binding energy and
lattice-QCD results is a nontrivial consequence of the assumed
extrapolation of Mπ r . To illustrate this point, we consider an
alternative scenario by assuming that Mπ r is a linear function
of M2

π rather than of Mπ . Notice that while a linear in Mπ

dependence seems to be natural for NN observables, such a
scenario cannot be excluded a priori. Using the lattice-QCD
result of Ref. [40] for Mπ r at the pion mass of Mπ = 800 MeV,
the resulting interpolation formula takes the form,

Mπ r ∼= C(3S1)+D(3S1)M2
π , where C(3S1) =1.149+0.009

−0.009
+0.011
−0.009,

D(3S1) = 3.95+0.45
−0.49

+0.45
−0.55 GeV−2; (4.2)

see the right panel of Fig. 5. The resulting LET predictions
for the deuteron binding energy are shown in Fig. 7. The
assumed quadratic dependence on Mπ is clearly in conflict
with the lattice-QCD results and, therefore, appears to be
highly unlikely. Interestingly, the shape parameters seem to
be more robust with respect to the variation of the functional
form of r(Mπ ) and show a qualitatively similar behavior in
both scenarios.

Finally, as a last application of the LETs, we use the quoted
values of the deuteron binding energy to predict the scattering
length, effective range, and the first three shape parameters
at pion masses of Mπ = 300 MeV, Mπ = 390 MeV, and
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make predictions for the scattering length, shape parameters,
and the deuteron binding energy. Our results for the deuteron
binding energy Bd , the ratio γd/Mπ , where γd =

√
BdmN is

the deuteron binding momentum, the ratio a/r , and the first
three shape parameters M3

πv2, M5
πv3, and M7

πv4 are visualized
in Fig. 6. In this figure, the dark shaded bands result from
the variation of the constant β specified in Eq. (3.1) and
reflect the uncertainty of the NLO LETs.4 The light-shaded
bands correspond to the resulting uncertainty which emerges
from the theoretical uncertainty at NLO and the errors of
the linear interpolation of Mπ r(Mπ ) [see the left panel of
Fig. 5 and Eq. (4.1)] added in quadrature. Notice that we
also show in Fig. 6 the preliminary lattice-QCD result of the
NPLQCD collaboration at Mπ = 430 MeV [43]. Remarkably,
the linear Mπ dependence of Mπ r suggested in Ref. [40]
indeed appears to describe very well the common trend of
the lattice-QCD results for the deuteron binding energy at
intermediate pion masses. Also the NPLQCD Collaboration
results of Ref. [40] for Bd , γd/Mπ , a/r , and M3

πv2 at the
pion mass of Mπ = 800 MeV can be well described by
further extrapolating our results to heavier pion masses without
introducing any strong curvature. Assuming the validity of
Eq. (4.1) for pion masses below the physical one, we conclude
that the deuteron becomes unbound for Mπ ∼ 50 MeV. It is
also interesting to notice that the scattering length and the
shape parameters show strong variations with the pion mass
around and below the physical point. This nontrivial behavior
is driven by the long-range physics associated with the pion
exchange and is, in principle, testable in lattice QCD. The
obtained results for the quantities γd/Mπ and a/r , which
probe the amount of fine tuning in the NN system, suggest
that the physically realized value of the quark mass is close
to the point, which separates the strong fine-tuning regime
characterized by the rapidly growing scattering length from
the regime featuring a fairly small amount of fine tuning with
a/r = 2 . . . 3 within the large range of pion masses.

4Note that employing the scalar subleading potential in Eq. (2.15)
instead of the tensor one yields the results which are well within the
dark shaded band for all quantities except for the parameter v3 which
is relatively small and appears to be slightly outside of this band for
Mπ > 250 MeV.

We emphasize that the observed agreement between the
predicted Mπ dependence of the deuteron binding energy and
lattice-QCD results is a nontrivial consequence of the assumed
extrapolation of Mπ r . To illustrate this point, we consider an
alternative scenario by assuming that Mπ r is a linear function
of M2

π rather than of Mπ . Notice that while a linear in Mπ

dependence seems to be natural for NN observables, such a
scenario cannot be excluded a priori. Using the lattice-QCD
result of Ref. [40] for Mπ r at the pion mass of Mπ = 800 MeV,
the resulting interpolation formula takes the form,

Mπ r ∼= C(3S1)+D(3S1)M2
π , where C(3S1) =1.149+0.009

−0.009
+0.011
−0.009,

D(3S1) = 3.95+0.45
−0.49

+0.45
−0.55 GeV−2; (4.2)

see the right panel of Fig. 5. The resulting LET predictions
for the deuteron binding energy are shown in Fig. 7. The
assumed quadratic dependence on Mπ is clearly in conflict
with the lattice-QCD results and, therefore, appears to be
highly unlikely. Interestingly, the shape parameters seem to
be more robust with respect to the variation of the functional
form of r(Mπ ) and show a qualitatively similar behavior in
both scenarios.

Finally, as a last application of the LETs, we use the quoted
values of the deuteron binding energy to predict the scattering
length, effective range, and the first three shape parameters
at pion masses of Mπ = 300 MeV, Mπ = 390 MeV, and
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V. BARU, E. EPELBAUM, A. A. FILIN, AND J. GEGELIA PHYSICAL REVIEW C 92, 014001 (2015)

TABLE II. Available experimental and infinite-volume lattice-QCD data for nucleon-nucleon scattering parameters and bound state energies
in the 1S0 and 3S1 channels at various values of the pion mass.

Mπ = 138 MeV Mπ = 300 MeV [42] Mπ = 390 MeV [36] Mπ = 510 MeV [38] Mπ = 800 MeV [40]

The 3S1 channel
Bd [MeV] 2.224 14.5(0.7)(+2.4

−0.7) 11(05)(12) 11.5(1.1)(0.6) 19.5(3.6)(3.1)(0.2)
a (fm) 5.42 Not given Not given Not given 1.82(+0.14

−0.13)(+0.17
−0.12)

r (fm) 1.75 Not given Not given Not given 0.906(+0.068
−0.075)(+0.068

−0.084)

The 1S0 channel
Bnn [MeV] – 8.5(0.7)(+2.2

−0.4) 7.1(5.2)(7.3) 7.4(1.3)(0.6) 15.9(2.7)(2.7)(0.2)
a (fm) −23.7 Not given Not given Not given 2.33(+0.19

−0.17)(+0.27
−0.20)

r (fm) 2.67 Not given Not given Not given 1.130(+0.071
−0.077)(+0.059

−0.063)

make predictions for the scattering length, shape parameters,
and the deuteron binding energy. Our results for the deuteron
binding energy Bd , the ratio γd/Mπ , where γd =

√
BdmN is

the deuteron binding momentum, the ratio a/r , and the first
three shape parameters M3

πv2, M5
πv3, and M7

πv4 are visualized
in Fig. 6. In this figure, the dark shaded bands result from
the variation of the constant β specified in Eq. (3.1) and
reflect the uncertainty of the NLO LETs.4 The light-shaded
bands correspond to the resulting uncertainty which emerges
from the theoretical uncertainty at NLO and the errors of
the linear interpolation of Mπ r(Mπ ) [see the left panel of
Fig. 5 and Eq. (4.1)] added in quadrature. Notice that we
also show in Fig. 6 the preliminary lattice-QCD result of the
NPLQCD collaboration at Mπ = 430 MeV [43]. Remarkably,
the linear Mπ dependence of Mπ r suggested in Ref. [40]
indeed appears to describe very well the common trend of
the lattice-QCD results for the deuteron binding energy at
intermediate pion masses. Also the NPLQCD Collaboration
results of Ref. [40] for Bd , γd/Mπ , a/r , and M3

πv2 at the
pion mass of Mπ = 800 MeV can be well described by
further extrapolating our results to heavier pion masses without
introducing any strong curvature. Assuming the validity of
Eq. (4.1) for pion masses below the physical one, we conclude
that the deuteron becomes unbound for Mπ ∼ 50 MeV. It is
also interesting to notice that the scattering length and the
shape parameters show strong variations with the pion mass
around and below the physical point. This nontrivial behavior
is driven by the long-range physics associated with the pion
exchange and is, in principle, testable in lattice QCD. The
obtained results for the quantities γd/Mπ and a/r , which
probe the amount of fine tuning in the NN system, suggest
that the physically realized value of the quark mass is close
to the point, which separates the strong fine-tuning regime
characterized by the rapidly growing scattering length from
the regime featuring a fairly small amount of fine tuning with
a/r = 2 . . . 3 within the large range of pion masses.

4Note that employing the scalar subleading potential in Eq. (2.15)
instead of the tensor one yields the results which are well within the
dark shaded band for all quantities except for the parameter v3 which
is relatively small and appears to be slightly outside of this band for
Mπ > 250 MeV.

We emphasize that the observed agreement between the
predicted Mπ dependence of the deuteron binding energy and
lattice-QCD results is a nontrivial consequence of the assumed
extrapolation of Mπ r . To illustrate this point, we consider an
alternative scenario by assuming that Mπ r is a linear function
of M2

π rather than of Mπ . Notice that while a linear in Mπ

dependence seems to be natural for NN observables, such a
scenario cannot be excluded a priori. Using the lattice-QCD
result of Ref. [40] for Mπ r at the pion mass of Mπ = 800 MeV,
the resulting interpolation formula takes the form,

Mπ r ∼= C(3S1)+D(3S1)M2
π , where C(3S1) =1.149+0.009

−0.009
+0.011
−0.009,

D(3S1) = 3.95+0.45
−0.49

+0.45
−0.55 GeV−2; (4.2)

see the right panel of Fig. 5. The resulting LET predictions
for the deuteron binding energy are shown in Fig. 7. The
assumed quadratic dependence on Mπ is clearly in conflict
with the lattice-QCD results and, therefore, appears to be
highly unlikely. Interestingly, the shape parameters seem to
be more robust with respect to the variation of the functional
form of r(Mπ ) and show a qualitatively similar behavior in
both scenarios.

Finally, as a last application of the LETs, we use the quoted
values of the deuteron binding energy to predict the scattering
length, effective range, and the first three shape parameters
at pion masses of Mπ = 300 MeV, Mπ = 390 MeV, and
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make predictions for the scattering length, shape parameters,
and the deuteron binding energy. Our results for the deuteron
binding energy Bd , the ratio γd/Mπ , where γd =

√
BdmN is

the deuteron binding momentum, the ratio a/r , and the first
three shape parameters M3

πv2, M5
πv3, and M7

πv4 are visualized
in Fig. 6. In this figure, the dark shaded bands result from
the variation of the constant β specified in Eq. (3.1) and
reflect the uncertainty of the NLO LETs.4 The light-shaded
bands correspond to the resulting uncertainty which emerges
from the theoretical uncertainty at NLO and the errors of
the linear interpolation of Mπ r(Mπ ) [see the left panel of
Fig. 5 and Eq. (4.1)] added in quadrature. Notice that we
also show in Fig. 6 the preliminary lattice-QCD result of the
NPLQCD collaboration at Mπ = 430 MeV [43]. Remarkably,
the linear Mπ dependence of Mπ r suggested in Ref. [40]
indeed appears to describe very well the common trend of
the lattice-QCD results for the deuteron binding energy at
intermediate pion masses. Also the NPLQCD Collaboration
results of Ref. [40] for Bd , γd/Mπ , a/r , and M3

πv2 at the
pion mass of Mπ = 800 MeV can be well described by
further extrapolating our results to heavier pion masses without
introducing any strong curvature. Assuming the validity of
Eq. (4.1) for pion masses below the physical one, we conclude
that the deuteron becomes unbound for Mπ ∼ 50 MeV. It is
also interesting to notice that the scattering length and the
shape parameters show strong variations with the pion mass
around and below the physical point. This nontrivial behavior
is driven by the long-range physics associated with the pion
exchange and is, in principle, testable in lattice QCD. The
obtained results for the quantities γd/Mπ and a/r , which
probe the amount of fine tuning in the NN system, suggest
that the physically realized value of the quark mass is close
to the point, which separates the strong fine-tuning regime
characterized by the rapidly growing scattering length from
the regime featuring a fairly small amount of fine tuning with
a/r = 2 . . . 3 within the large range of pion masses.

4Note that employing the scalar subleading potential in Eq. (2.15)
instead of the tensor one yields the results which are well within the
dark shaded band for all quantities except for the parameter v3 which
is relatively small and appears to be slightly outside of this band for
Mπ > 250 MeV.

We emphasize that the observed agreement between the
predicted Mπ dependence of the deuteron binding energy and
lattice-QCD results is a nontrivial consequence of the assumed
extrapolation of Mπ r . To illustrate this point, we consider an
alternative scenario by assuming that Mπ r is a linear function
of M2

π rather than of Mπ . Notice that while a linear in Mπ

dependence seems to be natural for NN observables, such a
scenario cannot be excluded a priori. Using the lattice-QCD
result of Ref. [40] for Mπ r at the pion mass of Mπ = 800 MeV,
the resulting interpolation formula takes the form,

Mπ r ∼= C(3S1)+D(3S1)M2
π , where C(3S1) =1.149+0.009

−0.009
+0.011
−0.009,

D(3S1) = 3.95+0.45
−0.49

+0.45
−0.55 GeV−2; (4.2)

see the right panel of Fig. 5. The resulting LET predictions
for the deuteron binding energy are shown in Fig. 7. The
assumed quadratic dependence on Mπ is clearly in conflict
with the lattice-QCD results and, therefore, appears to be
highly unlikely. Interestingly, the shape parameters seem to
be more robust with respect to the variation of the functional
form of r(Mπ ) and show a qualitatively similar behavior in
both scenarios.

Finally, as a last application of the LETs, we use the quoted
values of the deuteron binding energy to predict the scattering
length, effective range, and the first three shape parameters
at pion masses of Mπ = 300 MeV, Mπ = 390 MeV, and
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make predictions for the scattering length, shape parameters,
and the deuteron binding energy. Our results for the deuteron
binding energy Bd , the ratio γd/Mπ , where γd =

√
BdmN is

the deuteron binding momentum, the ratio a/r , and the first
three shape parameters M3

πv2, M5
πv3, and M7

πv4 are visualized
in Fig. 6. In this figure, the dark shaded bands result from
the variation of the constant β specified in Eq. (3.1) and
reflect the uncertainty of the NLO LETs.4 The light-shaded
bands correspond to the resulting uncertainty which emerges
from the theoretical uncertainty at NLO and the errors of
the linear interpolation of Mπ r(Mπ ) [see the left panel of
Fig. 5 and Eq. (4.1)] added in quadrature. Notice that we
also show in Fig. 6 the preliminary lattice-QCD result of the
NPLQCD collaboration at Mπ = 430 MeV [43]. Remarkably,
the linear Mπ dependence of Mπ r suggested in Ref. [40]
indeed appears to describe very well the common trend of
the lattice-QCD results for the deuteron binding energy at
intermediate pion masses. Also the NPLQCD Collaboration
results of Ref. [40] for Bd , γd/Mπ , a/r , and M3

πv2 at the
pion mass of Mπ = 800 MeV can be well described by
further extrapolating our results to heavier pion masses without
introducing any strong curvature. Assuming the validity of
Eq. (4.1) for pion masses below the physical one, we conclude
that the deuteron becomes unbound for Mπ ∼ 50 MeV. It is
also interesting to notice that the scattering length and the
shape parameters show strong variations with the pion mass
around and below the physical point. This nontrivial behavior
is driven by the long-range physics associated with the pion
exchange and is, in principle, testable in lattice QCD. The
obtained results for the quantities γd/Mπ and a/r , which
probe the amount of fine tuning in the NN system, suggest
that the physically realized value of the quark mass is close
to the point, which separates the strong fine-tuning regime
characterized by the rapidly growing scattering length from
the regime featuring a fairly small amount of fine tuning with
a/r = 2 . . . 3 within the large range of pion masses.

4Note that employing the scalar subleading potential in Eq. (2.15)
instead of the tensor one yields the results which are well within the
dark shaded band for all quantities except for the parameter v3 which
is relatively small and appears to be slightly outside of this band for
Mπ > 250 MeV.

We emphasize that the observed agreement between the
predicted Mπ dependence of the deuteron binding energy and
lattice-QCD results is a nontrivial consequence of the assumed
extrapolation of Mπ r . To illustrate this point, we consider an
alternative scenario by assuming that Mπ r is a linear function
of M2

π rather than of Mπ . Notice that while a linear in Mπ

dependence seems to be natural for NN observables, such a
scenario cannot be excluded a priori. Using the lattice-QCD
result of Ref. [40] for Mπ r at the pion mass of Mπ = 800 MeV,
the resulting interpolation formula takes the form,

Mπ r ∼= C(3S1)+D(3S1)M2
π , where C(3S1) =1.149+0.009
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−0.009,
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see the right panel of Fig. 5. The resulting LET predictions
for the deuteron binding energy are shown in Fig. 7. The
assumed quadratic dependence on Mπ is clearly in conflict
with the lattice-QCD results and, therefore, appears to be
highly unlikely. Interestingly, the shape parameters seem to
be more robust with respect to the variation of the functional
form of r(Mπ ) and show a qualitatively similar behavior in
both scenarios.

Finally, as a last application of the LETs, we use the quoted
values of the deuteron binding energy to predict the scattering
length, effective range, and the first three shape parameters
at pion masses of Mπ = 300 MeV, Mπ = 390 MeV, and
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V. BARU, E. EPELBAUM, A. A. FILIN, AND J. GEGELIA PHYSICAL REVIEW C 92, 014001 (2015)

TABLE II. Available experimental and infinite-volume lattice-QCD data for nucleon-nucleon scattering parameters and bound state energies
in the 1S0 and 3S1 channels at various values of the pion mass.

Mπ = 138 MeV Mπ = 300 MeV [42] Mπ = 390 MeV [36] Mπ = 510 MeV [38] Mπ = 800 MeV [40]

The 3S1 channel
Bd [MeV] 2.224 14.5(0.7)(+2.4

−0.7) 11(05)(12) 11.5(1.1)(0.6) 19.5(3.6)(3.1)(0.2)
a (fm) 5.42 Not given Not given Not given 1.82(+0.14

−0.13)(+0.17
−0.12)

r (fm) 1.75 Not given Not given Not given 0.906(+0.068
−0.075)(+0.068

−0.084)

The 1S0 channel
Bnn [MeV] – 8.5(0.7)(+2.2

−0.4) 7.1(5.2)(7.3) 7.4(1.3)(0.6) 15.9(2.7)(2.7)(0.2)
a (fm) −23.7 Not given Not given Not given 2.33(+0.19

−0.17)(+0.27
−0.20)

r (fm) 2.67 Not given Not given Not given 1.130(+0.071
−0.077)(+0.059

−0.063)

make predictions for the scattering length, shape parameters,
and the deuteron binding energy. Our results for the deuteron
binding energy Bd , the ratio γd/Mπ , where γd =

√
BdmN is

the deuteron binding momentum, the ratio a/r , and the first
three shape parameters M3

πv2, M5
πv3, and M7

πv4 are visualized
in Fig. 6. In this figure, the dark shaded bands result from
the variation of the constant β specified in Eq. (3.1) and
reflect the uncertainty of the NLO LETs.4 The light-shaded
bands correspond to the resulting uncertainty which emerges
from the theoretical uncertainty at NLO and the errors of
the linear interpolation of Mπ r(Mπ ) [see the left panel of
Fig. 5 and Eq. (4.1)] added in quadrature. Notice that we
also show in Fig. 6 the preliminary lattice-QCD result of the
NPLQCD collaboration at Mπ = 430 MeV [43]. Remarkably,
the linear Mπ dependence of Mπ r suggested in Ref. [40]
indeed appears to describe very well the common trend of
the lattice-QCD results for the deuteron binding energy at
intermediate pion masses. Also the NPLQCD Collaboration
results of Ref. [40] for Bd , γd/Mπ , a/r , and M3

πv2 at the
pion mass of Mπ = 800 MeV can be well described by
further extrapolating our results to heavier pion masses without
introducing any strong curvature. Assuming the validity of
Eq. (4.1) for pion masses below the physical one, we conclude
that the deuteron becomes unbound for Mπ ∼ 50 MeV. It is
also interesting to notice that the scattering length and the
shape parameters show strong variations with the pion mass
around and below the physical point. This nontrivial behavior
is driven by the long-range physics associated with the pion
exchange and is, in principle, testable in lattice QCD. The
obtained results for the quantities γd/Mπ and a/r , which
probe the amount of fine tuning in the NN system, suggest
that the physically realized value of the quark mass is close
to the point, which separates the strong fine-tuning regime
characterized by the rapidly growing scattering length from
the regime featuring a fairly small amount of fine tuning with
a/r = 2 . . . 3 within the large range of pion masses.

4Note that employing the scalar subleading potential in Eq. (2.15)
instead of the tensor one yields the results which are well within the
dark shaded band for all quantities except for the parameter v3 which
is relatively small and appears to be slightly outside of this band for
Mπ > 250 MeV.

We emphasize that the observed agreement between the
predicted Mπ dependence of the deuteron binding energy and
lattice-QCD results is a nontrivial consequence of the assumed
extrapolation of Mπ r . To illustrate this point, we consider an
alternative scenario by assuming that Mπ r is a linear function
of M2

π rather than of Mπ . Notice that while a linear in Mπ

dependence seems to be natural for NN observables, such a
scenario cannot be excluded a priori. Using the lattice-QCD
result of Ref. [40] for Mπ r at the pion mass of Mπ = 800 MeV,
the resulting interpolation formula takes the form,

Mπ r ∼= C(3S1)+D(3S1)M2
π , where C(3S1) =1.149+0.009

−0.009
+0.011
−0.009,

D(3S1) = 3.95+0.45
−0.49

+0.45
−0.55 GeV−2; (4.2)

see the right panel of Fig. 5. The resulting LET predictions
for the deuteron binding energy are shown in Fig. 7. The
assumed quadratic dependence on Mπ is clearly in conflict
with the lattice-QCD results and, therefore, appears to be
highly unlikely. Interestingly, the shape parameters seem to
be more robust with respect to the variation of the functional
form of r(Mπ ) and show a qualitatively similar behavior in
both scenarios.

Finally, as a last application of the LETs, we use the quoted
values of the deuteron binding energy to predict the scattering
length, effective range, and the first three shape parameters
at pion masses of Mπ = 300 MeV, Mπ = 390 MeV, and
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FIG. 5. (Color online) (Left panel) Linear with Mπ interpolation
of the quantity Mπ r in the 3S1 partial wave according to Eq. (4.1) as
suggested in Ref. [40]. (Right panel) Linear with M2

π interpolation
of the quantity Mπ r in the 3S1 partial wave according to Eq. (4.2).
In both cases, solid squares refer to the value of Mπ r at the physical
point.
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the deuteron binding momentum, the ratio a/r , and the first
three shape parameters M3

πv2, M5
πv3, and M7

πv4 are visualized
in Fig. 6. In this figure, the dark shaded bands result from
the variation of the constant β specified in Eq. (3.1) and
reflect the uncertainty of the NLO LETs.4 The light-shaded
bands correspond to the resulting uncertainty which emerges
from the theoretical uncertainty at NLO and the errors of
the linear interpolation of Mπ r(Mπ ) [see the left panel of
Fig. 5 and Eq. (4.1)] added in quadrature. Notice that we
also show in Fig. 6 the preliminary lattice-QCD result of the
NPLQCD collaboration at Mπ = 430 MeV [43]. Remarkably,
the linear Mπ dependence of Mπ r suggested in Ref. [40]
indeed appears to describe very well the common trend of
the lattice-QCD results for the deuteron binding energy at
intermediate pion masses. Also the NPLQCD Collaboration
results of Ref. [40] for Bd , γd/Mπ , a/r , and M3

πv2 at the
pion mass of Mπ = 800 MeV can be well described by
further extrapolating our results to heavier pion masses without
introducing any strong curvature. Assuming the validity of
Eq. (4.1) for pion masses below the physical one, we conclude
that the deuteron becomes unbound for Mπ ∼ 50 MeV. It is
also interesting to notice that the scattering length and the
shape parameters show strong variations with the pion mass
around and below the physical point. This nontrivial behavior
is driven by the long-range physics associated with the pion
exchange and is, in principle, testable in lattice QCD. The
obtained results for the quantities γd/Mπ and a/r , which
probe the amount of fine tuning in the NN system, suggest
that the physically realized value of the quark mass is close
to the point, which separates the strong fine-tuning regime
characterized by the rapidly growing scattering length from
the regime featuring a fairly small amount of fine tuning with
a/r = 2 . . . 3 within the large range of pion masses.
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instead of the tensor one yields the results which are well within the
dark shaded band for all quantities except for the parameter v3 which
is relatively small and appears to be slightly outside of this band for
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see the right panel of Fig. 5. The resulting LET predictions
for the deuteron binding energy are shown in Fig. 7. The
assumed quadratic dependence on Mπ is clearly in conflict
with the lattice-QCD results and, therefore, appears to be
highly unlikely. Interestingly, the shape parameters seem to
be more robust with respect to the variation of the functional
form of r(Mπ ) and show a qualitatively similar behavior in
both scenarios.

Finally, as a last application of the LETs, we use the quoted
values of the deuteron binding energy to predict the scattering
length, effective range, and the first three shape parameters
at pion masses of Mπ = 300 MeV, Mπ = 390 MeV, and
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FIG. 5. (Color online) (Left panel) Linear with Mπ interpolation
of the quantity Mπ r in the 3S1 partial wave according to Eq. (4.1) as
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of the quantity Mπ r in the 3S1 partial wave according to Eq. (4.2).
In both cases, solid squares refer to the value of Mπ r at the physical
point.

014001-10

V. BARU, E. EPELBAUM, A. A. FILIN, AND J. GEGELIA PHYSICAL REVIEW C 92, 014001 (2015)

TABLE II. Available experimental and infinite-volume lattice-QCD data for nucleon-nucleon scattering parameters and bound state energies
in the 1S0 and 3S1 channels at various values of the pion mass.

Mπ = 138 MeV Mπ = 300 MeV [42] Mπ = 390 MeV [36] Mπ = 510 MeV [38] Mπ = 800 MeV [40]

The 3S1 channel
Bd [MeV] 2.224 14.5(0.7)(+2.4

−0.7) 11(05)(12) 11.5(1.1)(0.6) 19.5(3.6)(3.1)(0.2)
a (fm) 5.42 Not given Not given Not given 1.82(+0.14

−0.13)(+0.17
−0.12)

r (fm) 1.75 Not given Not given Not given 0.906(+0.068
−0.075)(+0.068

−0.084)

The 1S0 channel
Bnn [MeV] – 8.5(0.7)(+2.2

−0.4) 7.1(5.2)(7.3) 7.4(1.3)(0.6) 15.9(2.7)(2.7)(0.2)
a (fm) −23.7 Not given Not given Not given 2.33(+0.19

−0.17)(+0.27
−0.20)

r (fm) 2.67 Not given Not given Not given 1.130(+0.071
−0.077)(+0.059

−0.063)

make predictions for the scattering length, shape parameters,
and the deuteron binding energy. Our results for the deuteron
binding energy Bd , the ratio γd/Mπ , where γd =

√
BdmN is

the deuteron binding momentum, the ratio a/r , and the first
three shape parameters M3

πv2, M5
πv3, and M7

πv4 are visualized
in Fig. 6. In this figure, the dark shaded bands result from
the variation of the constant β specified in Eq. (3.1) and
reflect the uncertainty of the NLO LETs.4 The light-shaded
bands correspond to the resulting uncertainty which emerges
from the theoretical uncertainty at NLO and the errors of
the linear interpolation of Mπ r(Mπ ) [see the left panel of
Fig. 5 and Eq. (4.1)] added in quadrature. Notice that we
also show in Fig. 6 the preliminary lattice-QCD result of the
NPLQCD collaboration at Mπ = 430 MeV [43]. Remarkably,
the linear Mπ dependence of Mπ r suggested in Ref. [40]
indeed appears to describe very well the common trend of
the lattice-QCD results for the deuteron binding energy at
intermediate pion masses. Also the NPLQCD Collaboration
results of Ref. [40] for Bd , γd/Mπ , a/r , and M3

πv2 at the
pion mass of Mπ = 800 MeV can be well described by
further extrapolating our results to heavier pion masses without
introducing any strong curvature. Assuming the validity of
Eq. (4.1) for pion masses below the physical one, we conclude
that the deuteron becomes unbound for Mπ ∼ 50 MeV. It is
also interesting to notice that the scattering length and the
shape parameters show strong variations with the pion mass
around and below the physical point. This nontrivial behavior
is driven by the long-range physics associated with the pion
exchange and is, in principle, testable in lattice QCD. The
obtained results for the quantities γd/Mπ and a/r , which
probe the amount of fine tuning in the NN system, suggest
that the physically realized value of the quark mass is close
to the point, which separates the strong fine-tuning regime
characterized by the rapidly growing scattering length from
the regime featuring a fairly small amount of fine tuning with
a/r = 2 . . . 3 within the large range of pion masses.

4Note that employing the scalar subleading potential in Eq. (2.15)
instead of the tensor one yields the results which are well within the
dark shaded band for all quantities except for the parameter v3 which
is relatively small and appears to be slightly outside of this band for
Mπ > 250 MeV.

We emphasize that the observed agreement between the
predicted Mπ dependence of the deuteron binding energy and
lattice-QCD results is a nontrivial consequence of the assumed
extrapolation of Mπ r . To illustrate this point, we consider an
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of M2

π rather than of Mπ . Notice that while a linear in Mπ
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the resulting interpolation formula takes the form,
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−0.55 GeV−2; (4.2)

see the right panel of Fig. 5. The resulting LET predictions
for the deuteron binding energy are shown in Fig. 7. The
assumed quadratic dependence on Mπ is clearly in conflict
with the lattice-QCD results and, therefore, appears to be
highly unlikely. Interestingly, the shape parameters seem to
be more robust with respect to the variation of the functional
form of r(Mπ ) and show a qualitatively similar behavior in
both scenarios.

Finally, as a last application of the LETs, we use the quoted
values of the deuteron binding energy to predict the scattering
length, effective range, and the first three shape parameters
at pion masses of Mπ = 300 MeV, Mπ = 390 MeV, and
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where

This leads to                                 (the error includes the theoretical uncertainty of the 
LETs and lattice results, but NOT the systematic uncertainty of the assumed linear 
extrapolation of the effective range).
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 Summary
The lack of information about quark mass dependence of the NN contact interactions 
leads to large uncertainties in χ extrapolations of nuclear observables. It can be 
parametrized by 
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Employing resonance saturation (combined with unitized ChPT + lattice-QCD), one 
finds at N2LO: 
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(the uncertainty due to resonance saturation is not included!)

These results are compatible with the LO chiral EFT predictions (large uncertainty) & 
with the phenomenological analysis by Flambaum, Wiringa (no uncertainty estimate 
provided).

Using LETs in combination with the conjectured linear dependence of Mπ r(3S1) seems 
to reproduce the lattice-QCD trend for the 2H BE and leads to 
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need more precise lattice-QCD calculations near the physical point


