

- Reynolds # for particles \sim 100-300
- Eckman # (viscous / Coriolis) $\sim 10^{-3}$
- Rossby # (non-linear/linear) ~0.5

These show that the problem is not so simple, and will involve non-linear and viscous effects in the long run

Boundary conditions: $v_r=0$ on the curved walls (r=R) and v_z =0 at the ends lead to an eigenvalue equation: 1 $J'_{1}(\gamma r) + \frac{2J_{1}(\gamma r)}{r} = 0$ *r* $\mathcal Y$ $\mathscr Y$ γ $\frac{1}{1}(\gamma r) + \frac{2J_1(\gamma r)}{r} =$ With a first solution $yR=2.74$ and wavelength $λ=3.97R$. Compare with experimental results…. Oscillatory Particle Banding in a Rotating Fluid

- In alternate nodal planes the particle accumulate. But any nodal plane satisfies the end boundary conditions.
- If ω is not exactly equal to Ω , there can be beats between the two patterns : hence the oscillations?
- We have not yet dealt with this satisfactorily.

- How does viscosity affect the resonance condition?
- If we put the interaction force $F=\alpha \rho v$, we find

$$
\frac{\gamma^2}{k^2} = \frac{4\Omega^2}{\Omega^2 + \alpha^2} - 1
$$

instead of 3, which increases ω and decreases Λ, as seen in the experiments

