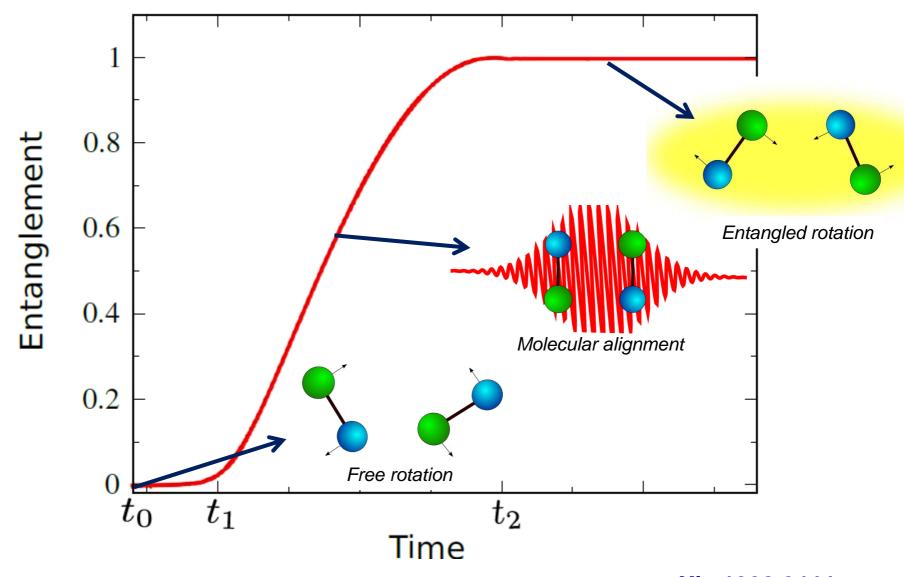
Entanglement Manipulation in Cold Molecular Gases using Strong Laser Pulses


Felipe Herrera

Purdue University Harvard University

Brief review

- How to create entanglement in optical lattices?
 - Tuning interparticle distance to control scattering dynamics:
 - s-wave interaction induces a phase shift for conditional logic *Nature* 425, 937, **2003**; *Nature* 448, 452, **2007**
 - Excitation of particles to strongly interacting states:
 - Long-range interaction induces a conditional phase shift
 Nat. Phys. 5, 110, 2009; PRL 104, 010502, 2010; PRL 104, 010503, 2010
 - Other theoretical proposals:
 - NMR-type "always-on" dipole-dipole interaction PRL 88, 067901, 2002
 - Topologically protected states in spin chains Nat. Phys. 2, 341, 2006

The idea of this talk

Molecules in off-resonant laser fields

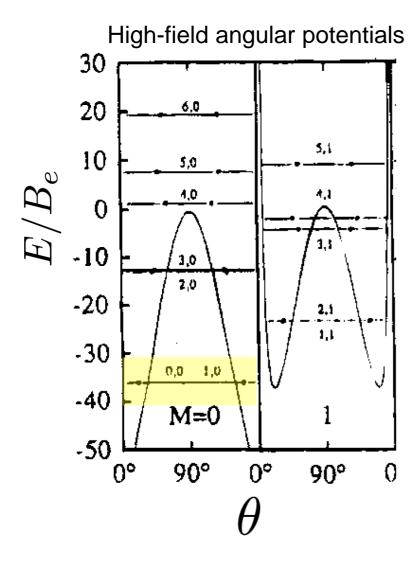
- Optical field far-detuned from any vibronic resonance
 - Low intensity fields give optical trapping potentials
- Eliminating excited electronic state from the system dynamics gives the effective light-matter interaction*

$$\hat{H}_{AC} = -\frac{|E_0|^2}{4} \left\{ \alpha_{\perp} + (\alpha_{\parallel} - \alpha_{\perp}) \cos^2 \theta \right\}$$

- For a wide range of intensities, laser field only couples to rotational degrees of freedom
 - Field strength below ionization threshold ($E_0 < 10^9 \text{ V/cm}$)

^{*}Linear molecule & linear field polarization, see *Rev. Mod. Phys* .75, 543, 2003

Molecular alignment


- Optical field creates a double-well potential in angular space
- Rotational motion is constrained to potential minima.
- The effective Hamiltonian in angular space is given by

$$H = -B_e \frac{d^2}{d\theta^2} + V_{\text{eff}}(\theta)$$

Anisotropic double-well angular potential

$$V_{\text{eff}}(\theta) = B_e \left(\frac{|M|^2 - 1/4}{\sin^2 \theta} - \frac{1}{4} \right) + \bar{H}_{AC}$$

Two-level approximation

The lowest two rotational states with M=0 form a qubit basis

J. Phys. Chem. 99, 15686, 1995

Field-dressed dipolar interaction

· Dipole-dipole interaction between molecules given by

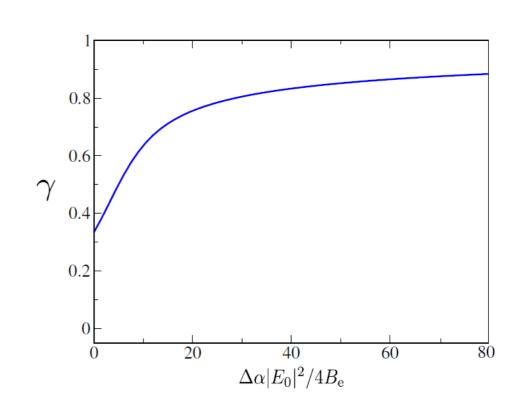
$$\hat{V}_{dd} = \gamma (d^2/R_{ij}^3)(1 - 3\cos^2\Theta) \{|e_i e_j\rangle\langle g_i g_j| + |e_i g_j\rangle\langle g_i e_j| + \text{H.c.}\}$$

• Universal parameter $0 \le \gamma \le 1$ depends on field strength

$$\gamma = |\langle e|\hat{d}_Z|g\rangle|^2/d^2$$

- If the field breaks parity:
 - $oldsymbol{\cdot}$ γ is suppressed with increasing field strength
 - · Additional channels become allowed
- Far-detuned optical fields preserve parity (Raman process)

Double exchange interaction


- Strong laser field suppresses the qubit energy gap
- Double excitations become energetically allowed

$$J_{ij} = \langle e_i e_j | \hat{V}_{dd} | g_i g_j \rangle$$
$$= \langle e_i g_j | \hat{V}_{dd} | g_i e_j \rangle$$

Parity forbidden channels

$$V_{ij}^{gg} = \langle g_i g_j | \hat{V}_{dd} | g_i g_j \rangle = 0$$

$$V_{ij}^{ee} = \langle e_i e_j | \hat{V}_{dd} | e_i e_j \rangle = 0$$

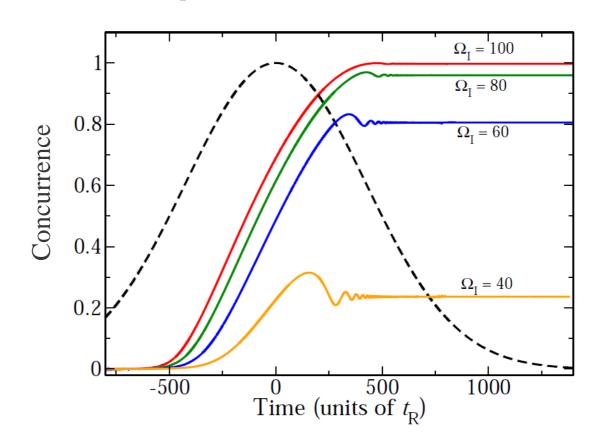
Two-body dynamics in strong fields

- Consider dipolar coupling driven by strong laser pulse
 - Intermolecular distance is fixed
 - Initial state is separable
 - Pulse is long compared with molecular rotation period
- Two-body evolution determined by simple Hamiltonian
 - Time-dependence induced by the pulse

$$\mathcal{H} = \begin{pmatrix} 0 & 0 & 0 & J_{12}(t) \\ 0 & \epsilon_{eg}(t) & J_{12}(t) & 0 \\ 0 & J_{12}(t) & \epsilon_{eg}(t) & 0 \\ J_{12}(t) & 0 & 0 & 2\epsilon_{eg}(t) \end{pmatrix}$$

- Relevant timescales for optical traps
 - Laser pulse duration much larger than rotational period (~1 ps)
 - Pulse duration not larger than dipolar interaction time (\sim 10-100 µs)
 - Decoherence time is the longest timescale ($\sim 1 \text{ s}$)
- Solve two-body evolution for Gaussian pulse
 - Ignore dissipation and solve Hamiltonian dynamics numerically
 - Initial condition is the separable ground state $|g_1g_2
 angle$
 - Single-excitation manifold is uncoupled from the dynamics
 - System undergoes loop in parameter space without geometrical phase

Alignment-mediated entanglement


- Molecules become entangled during alignment period
 - Entanglement persists after the pulse is over
 - Concurrence depends on laser parameters

Light-matter interaction strength

$$\Omega_{\rm I} = \frac{\Delta \alpha |E_0|^2}{4B_e}$$

Rotational timescale

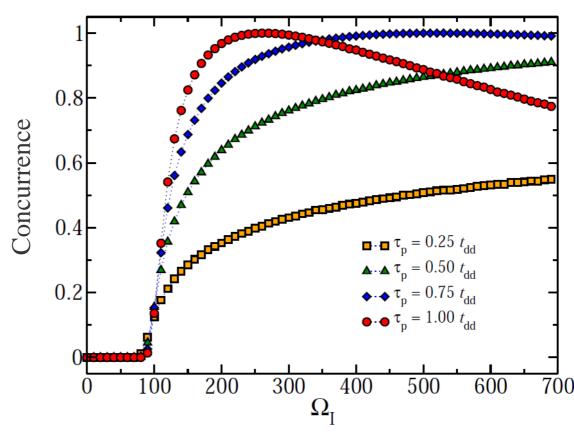
$$t_{\rm R} = \hbar/B_{\rm e}$$

Laser manipulation of entanglement

- Relevant system parameters
 - Intermolecular distance R
 - Pulse peak intensity Ω_0
 - Pulse duration $au_{
 m p}$

Dipole-dipole interaction time

$$t_{\rm dd} = \hbar R^3 / d^2$$


Plot for fixed distance

$$R = 100 R_0$$

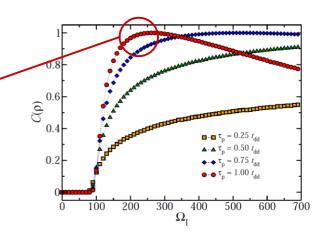
Dipole radius

$$R_0 = (d^2/B_e)^{1/3}$$

Asymptotic concurrence vs peak intensity

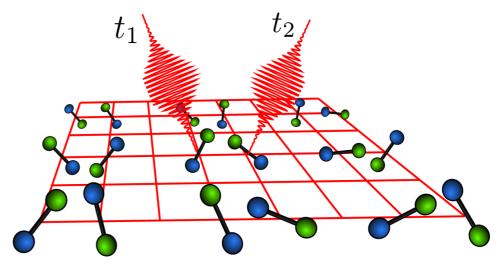
Alkali-metal dimers in optical lattices

• System parameters for selected species


	d	$\Delta \alpha_{ m V}$	B_e	I_0	R_0	$t_{ m R}$
	(D)	(a_0^3)	$(cm^{-1}) (10^8)$	$\mathrm{W/cm^2})$	(nm)	(ps)
RbCs	1.238	441	0.0290	0.4	6.4	1.15
KRb	0.615	360	0.0386	0.7	3.7	0.86
LiCs	5.529	327	0.1940	3.8	9.3	0.17
LiRb	4.168	280	0.2220	5.0	7.3	0.15

Example:

LiRb molecules in a 1460 nm wavelength lattice


Maximally entangled molecular pairs with

- Peak Intensity = $1.35 \times 10^{11} \text{ W/cm}^2$
- FWHM = 150 ns

Entanglement detection in optical traps

- We propose two ways to detect rotational entanglement
 - Laser-induced fluorescence measurements with site resolution
 - Microwave absorption of the array
 - Molecules are initially prepared in entangled state
- Can we establish violations of Bell's inequality?
 - Measure molecular orientation at different times
 - Simple case: double-well lattice

Molecular orientation

- There is a direct analogy between rotational evolution and orientation of Stern-Gerlach apparatus
 - Spin orientation is replaced by the orientation of internuclear axis. For linear molecules the operator is $\hat{O}=\cos\theta$
 - In the two-level subspace this reduces to $\hat{O}=a_X\hat{\sigma}_X$, with $a_X=1/\sqrt{3}$
 - In the Heisenberg picture:

$$\hat{O}(au) = \mathrm{e}^{i\sigma_{Z} au}\hat{O}\mathrm{e}^{-i\sigma_{Z} au}$$
 Dimensionless time $au = 2B_{\mathrm{e}}t/\hbar$ $= \vec{a}(au)\cdot\vec{\sigma}$ (Pseudo) Stern-Gerlach direction $\vec{a}(au) = a_{X}(\cos au, -\sin au, 0)$

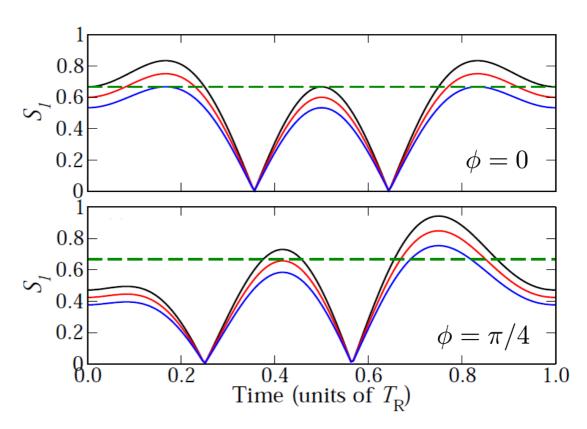
 Rotational time evolution is equivalent to a rotation of the Stern-Gerlach apparatus in the XY plane.

Bell inequality for orientation correlations

 By measuring molecular orientation at different sites it is possible to establish violations of the CHSH-type inequality

$$|E(t_a, t_b) + E(t_a, t_b') + E(t_a', t_b) - E(t_a', t_b')| \le 2/3$$

Orientation correlation function


$$E(t,t') = \langle \hat{O}(t) \otimes \hat{O}(t') \rangle$$
$$= \langle \vec{a} \cdot \vec{\sigma} \otimes \vec{a}' \cdot \vec{\sigma} \rangle$$

Initial entangled state

$$|\Phi_0\rangle = a_0|g_1g_2\rangle + b_0|e_1e_2\rangle$$

Relative phase

$$\phi = \arg\{b_0\}$$

Microwave entanglement detection

- Single site resolution is not straightforward to achieve
 - Although experiments with atoms are promising
 Nature 471, 319, 2011; PRL 104, 010502, 2010; PRL 104, 010503, 2010
- Microwave field addresses the ensemble globally
 - For thermal ensembles, the linear absorption at frequency $\omega_{eg}=2B_{\rm e}/\hbar$ has Lorentzian lineshape.

$$\hbar\omega$$

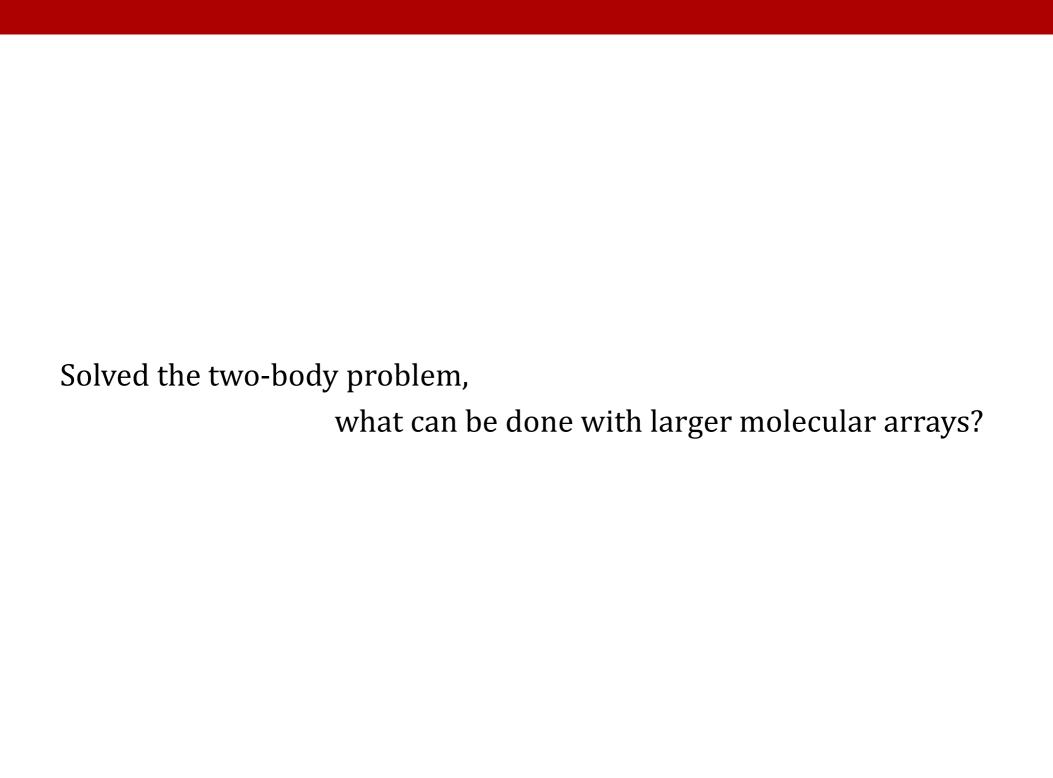
$$A(\omega) = \mathcal{N}\left(\frac{d^2}{3\hbar}\right) P_0(T) \frac{\gamma_e}{(\omega - \omega_{eg})^2 + \gamma_e^2}$$

Ensemble of non-interacting molecules

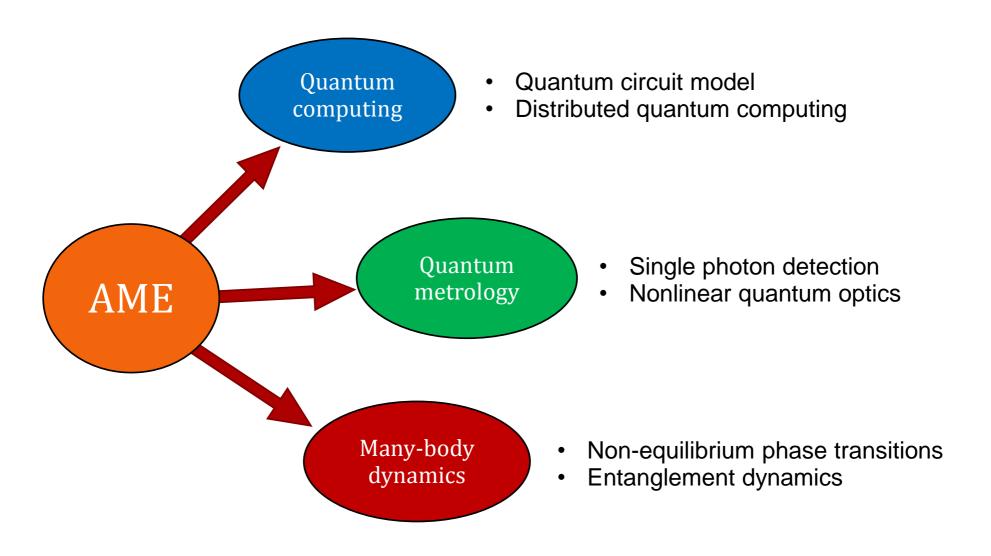
- How does this change for an ensemble of entangled dimers?
 - Consider identical pairs in the state $|\Phi\rangle = a|g_1g_2\rangle + b|e_1e_2\rangle$
 - Frequency near resonance with lowest dipole-allowed transition
 - The absorption lineshape has a dynamical contribution proportional to the dimer concurrence

$$\mathcal{A}(\omega) = \mathcal{N}\left(\frac{d^2}{3\hbar}\right) \left[|a|^2 \frac{\gamma_S}{(\omega - \omega_S)^2 + \gamma_S^2} + |ab| \frac{\mathcal{F}_{\omega}(t)}{(\omega - \omega_S)^2 + \gamma_S^2} \right]$$

Dynamical lineshape factor


$$\mathcal{F}_{\omega}(t) = e^{-\gamma t} \left[(\omega_S - \omega) \sin(\phi t) + \gamma_S \cos(\phi t) \right]$$

 Detecting oscillations in the absorption peak indicates presence of entanglement


$$\begin{array}{c|c}
 & |e_1e_2\rangle \\
\hline
 & |A\rangle \\
\hline
 & |S\rangle \\
\hline
 & |g_1g_2\rangle
\end{array}$$

Summary

- Strong laser pulses mediate long-range entanglement between polar molecules.
- Degree of binary entanglement can be manipulated by tuning pulse parameters.
- Violation of Bell's inequality in optical traps can be established by measuring site-resolved fluorescence.
- Signatures of entanglement are present in the coherent beating of the *linear* microwave spectra.

Applications for larger systems

Acknowledgements

- Sabre Kais @ Purdue
- Birgitta Whaley @ UC Berkeley
- Alan Aspuru-Guzik @ Harvard
- Roman Krems @ UBC

References

- Preprint arXiv 1302.6444
- Molecular alignment and orientation
 - Orr-Ewing & Zare, Annu. Rev. Phys. Chem. 45, 315 (1994)
 - Friedrich & Hershbach, PRL 74, 4623 (1995)
 - Seideman & Hamilton, Adv. At. Mol. Phys. 52, 289 (2005)
- Dipole-dipole interaction in external fields
 - Herrera & Krems, PRA 84, 051401(R) (2011)
 - Herrera, PhD Thesis, UBC (2012)
 - Lemeshko & Friedrich, Mol. Phys. 110, 1873 (2012)
 - Carr, DeMille, Krems, Ye, New J. Phys. 11, 055049 (2009)
- Entanglement creation and detection
 - Amico, Fazio, Osterloh, Vedral, Rev. Mod. Phys 80, 517 (2008)