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Brief review 

• How to create entanglement  in optical lattices? 
 
• Tuning interparticle distance to control scattering dynamics: 

• s-wave interaction induces a phase shift for conditional logic 
  Nature 425, 937,  2003; Nature 448, 452, 2007 

   

• Excitation of particles to strongly interacting states: 

• Long-range interaction induces a conditional phase shift 
 Nat. Phys. 5, 110, 2009;  PRL 104, 010502, 2010;  PRL 104, 010503, 2010 

 

• Other theoretical proposals: 

• NMR-type “always-on” dipole-dipole interaction  PRL 88, 067901, 2002 

• Topologically protected states in spin chains  Nat. Phys. 2, 341, 2006 

 

  



The idea of this talk 

arXiv 1302.6444 

Free rotation 

Molecular alignment 

Entangled rotation 



Molecules in off-resonant laser fields 

• Optical field far-detuned from any vibronic resonance 

• Low intensity fields give optical trapping potentials 

 

• Eliminating excited electronic state from the system 
dynamics gives the effective light-matter interaction* 

 

 

 

• For a wide range of intensities, laser field only couples to 
rotational degrees of freedom 
• Field strength below ionization threshold (E0 < 109 V/cm) 

*Linear molecule & linear field polarization, see Rev. Mod. Phys .75, 543, 2003 



Molecular alignment 

• Optical field creates a double-well potential in angular space 
 

• Rotational motion is constrained to potential minima.  

 

• The effective Hamiltonian in angular space is given by 
 

Anisotropic  double-well angular potential 

Friedrich & Herschbach, J. Phys. Chem. 99, 15686, 1995 



Two-level approximation 

High-field angular potentials 

J. Phys. Chem. 99, 15686, 1995 

The lowest two rotational states 
with M=0 form a qubit basis  



Field-dressed dipolar interaction 

• Dipole-dipole interaction between molecules given by 

 

 

• Universal parameter   depends on field strength 

 

 

• If the field breaks parity: 
•       is suppressed with increasing field strength 

• Additional channels become allowed 

 

• Far-detuned optical fields preserve parity (Raman process) 
 



Double exchange interaction 

• Strong laser field suppresses the qubit energy gap 
 

• Double excitations become energetically allowed 

 

 

Parity forbidden channels 



Two-body dynamics in strong fields 

• Consider dipolar coupling driven by strong  laser pulse 

• Intermolecular distance is fixed 

• Initial state is separable 

• Pulse is long compared with molecular rotation period 

 

• Two-body evolution determined by simple Hamiltonian 
• Time-dependence induced by the pulse 

 

 



• Relevant timescales for optical traps 

• Laser pulse duration much larger than rotational period (~1 ps) 

• Pulse duration not larger than dipolar interaction time (~10-100 µs) 

• Decoherence time is the longest timescale (~1 s) 

 

• Solve two-body evolution for Gaussian pulse 
• Ignore dissipation and solve Hamiltonian dynamics numerically 

• Initial condition is the separable ground state  

• Single-excitation manifold is uncoupled from the dynamics 

• System undergoes loop in parameter space without geometrical phase 



Alignment-mediated entanglement 

• Molecules become entangled during alignment period 

• Entanglement persists after the pulse is over 

• Concurrence depends on laser parameters 
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interaction strength 

Rotational 
timescale 



Laser manipulation of entanglement 

• Relevant system parameters 

• Intermolecular distance     

• Pulse peak intensity  

• Pulse duration  
Asymptotic concurrence vs peak intensity 

Dipole-dipole  
interaction time 

Plot for fixed distance 
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Dipole radius 



Alkali-metal dimers in optical lattices 

 System parameters for selected species 

Example:  
LiRb molecules in a 1460 nm wavelength lattice 

Maximally entangled molecular pairs with 
 

 Peak Intensity = 1.35  × 1011 W/cm2 

 FWHM = 150 ns   



Entanglement detection in optical traps 

• We propose two ways to detect rotational entanglement 

• Laser-induced fluorescence measurements with site resolution 

• Microwave absorption of the array 

• Molecules are initially prepared in entangled state 

 

• Can we establish violations of Bell’s inequality? 
 
• Measure molecular orientation 

at different times 
 

• Simple case: 
double-well lattice 



Molecular orientation 

• There is a direct analogy between rotational evolution and 
orientation of Stern-Gerlach apparatus 
 
• Spin orientation is replaced by the orientation of internuclear axis. 

For linear molecules the operator is 

• In the two-level subspace this reduces to 

• In the Heisenberg picture: 

 

 

 

 

• Rotational time evolution is equivalent to a rotation of the Stern-
Gerlach apparatus in the XY plane.  

 

 

 

, with 

(Pseudo) Stern-Gerlach direction 

Dimensionless time 



Bell inequality for orientation correlations 

• By measuring molecular orientation at different sites it is 
possible to establish violations of the CHSH-type inequality 
 

 

Orientation correlation function 

Initial entangled state 

Relative phase 



Microwave entanglement detection 

• Single site resolution is not straightforward to achieve 
• Although experiments with atoms are promising  

Nature 471, 319, 2011; PRL 104, 010502, 2010;  PRL 104, 010503, 2010 

 

• Microwave field addresses the ensemble globally 
• For thermal ensembles, the linear absorption at frequency  

      has Lorentzian lineshape. 

Ensemble of non-interacting molecules 



• How does this change for an ensemble of entangled dimers? 
 

• Consider identical pairs in the state 

• Frequency near resonance with lowest dipole-allowed transition 

• The absorption lineshape has a dynamical contribution proportional 
to the dimer concurrence 

 

 

 

 

 

 

• Detecting oscillations in the absorption peak  
indicates presence of entanglement 

 

Dynamical lineshape factor 



Summary 

• Strong laser pulses mediate long-range entanglement 
between polar molecules. 

 

• Degree of  binary entanglement can be manipulated by  
tuning pulse parameters. 

 

• Violation of Bell’s inequality in optical traps can be 
established by measuring site-resolved fluorescence. 

 

• Signatures of entanglement are present in the coherent 
beating of the linear microwave spectra. 

 

 



Solved the two-body problem,  

           what can be done with larger molecular arrays? 



Applications for larger systems 

Quantum  
metrology 

Many-body 
dynamics 

• Single photon detection 
• Nonlinear quantum optics 

• Quantum circuit model 
• Distributed quantum computing 

• Non-equilibrium phase transitions 
• Entanglement dynamics 

Quantum 
computing 
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