Driven Double-Quantum Dots

Tom Stace,

University of Queensland, Brisbane, Australia

stace@physics.uq.edu.au

ARC CENTRE OF EXCELLENCE FOR ENGINEERED QUANTUM SYSTEMS

Outline

- Introduction to charge qubits and detectors
- Microwave driven double dot qubit
- Electron-phonon coupling
- Breakdown of RWA
- Conclusions

Steady state current

- at T=0, system relaxes (phonon emission) to ground state $\rho(\infty) = |g\rangle \langle g|$
- Detector current is proportional to ground state occupation of nearest well $I_{ss} \propto \langle l | \rho(\infty) | l \rangle$

Experiments (cont.)

• DiCarlo et al. PRL 92 226801 (2004)

Microwave driven charge qubit

• Bare qubit Hamiltonian can be described in terms of *localized* states $|1\rangle$ and $|2\rangle$

• Add time dependent driving field at frequency: $\omega_{rf} = \phi + \eta$ $H_{\text{driv}} = \frac{e\vec{E}(t) \cdot \vec{a}}{2} \left(|1\rangle\langle 1| - |2\rangle\langle 2| \right), \quad \vec{E}(t) = \vec{E}_0 \cos\left[(\phi + \eta)t\right]$

Microwave driven charge qubit

• Transform to rotating frame and make rotating wave approximation

$$\tilde{H}_{\text{RWA}} = -(\eta \, \sigma_z^e + \Omega \, \sigma_x^e)/2.$$
 $\eta = \omega - \phi$

• RWA Hamiltonian is diagonal in 'dressed' basis & has energy splitting given by the effective Rabi frequency

$$\Omega' = \sqrt{\Omega^2 + \eta^2}$$

$$\Omega' = e\vec{E}_0 \cdot \vec{a} \sin \theta, \quad \theta = \tan^{-1}\left(\frac{\Delta}{\epsilon}\right)$$

$$\Omega = e\vec{E}_0 \cdot \vec{a} \sin \theta, \quad \theta = \tan^{-1}\left(\frac{\Delta}{\epsilon}\right)$$

$$\Omega = e\vec{E}_0 \cdot \vec{a} \sin \theta, \quad \theta = \tan^{-1}\left(\frac{\Delta}{\epsilon}\right)$$

Phonon Environment

• Phonon bath is major source of relaxation

$$_{\rm e-p} = \sum_{\mathbf{q}} i_{\mathbf{q}} \hat{\varrho}(\mathbf{q})(\mathbf{q} - \mathbf{\dagger}_{-\mathbf{q}}),$$

(8

| ω

• $M_{\mathbf{q}}$ can be piezoelectric or deformation potential

• Restrict electronic states in electron density operator $\hat{\varrho}$ and get a spin boson model

$$H_{\rm e-p} \approx \sigma_z \sum_{\mathbf{q}} g_{\mathbf{q}} \left(a_{\mathbf{q}}^{\dagger} + a_{\mathbf{q}} \right),$$

Steady state current

With driving, get resonant peaks when $\omega = \phi$.

Past expe

... and in isolated quantum dots:

ılts

Peaks should remain below 0.5

Recent experimental results

Reilly et al, unpublished 2012

 ∇

without driving

with driving

Surprise!

The peaks go over 0.5! i.e. population inversion: the systems spends longer in the excited state

Master equation

• Derive master equation from dynamics of joint density matrix R:

$$\dot{\rho}_I(t) = -\int_0^t dt' \operatorname{Tr}_B[H_I(t), [H_I(t'), R(t')]].$$

•Two versions of secular / rotating wave approximation

a) in dressed basis $\dot{\rho_{I}} = \sum_{\omega'} J(\omega') \left[(N(\omega') + 1) \mathcal{D}[P_{\omega'}] \rho_{I} + N(\omega') \mathcal{D}[P_{\omega'}^{\dagger}] \rho_{I} \right]$ Spectral density $J(\omega) = 2\pi \sum_{\mathbf{q}} |g_{\mathbf{q}}|^{2} \delta(\omega - \omega_{\mathbf{q}})$

where
$$P_0 = \cos\theta\cos\varphi \sigma_z^d/2$$
, $P_{\Omega'} = -\cos\theta\sin\varphi \sigma_-^d$,
 $P_{\omega_0\pm\Omega'} = \mp\sin\theta (1\pm\cos\varphi) \sigma_{\mp}^d/2$, $P_{\omega_0} = -\sin\theta\sin\varphi \sigma_z^d/2$.
 $N(\omega) = (e^{\omega/k_BT} - 1)^{-1}$
 $\mathcal{D}[A]\rho \equiv A\rho A^{\dagger} - (A^{\dagger}A\rho + \rho A^{\dagger}A)/2$

Master equation

• Derive master equation from dynamics of joint density matrix R:

$$\dot{\rho}_I(t) = -\int_0^t dt' \operatorname{Tr}_B[H_I(t), [H_I(t'), R(t')]].$$

•Two versions of secular / rotating wave approximation a) in dressed basis $\dot{\rho_I} = \sum_{\omega'} J(\omega') \left[(N(\omega') + 1) \mathcal{D}[P_{\omega'}] \rho_I + N(\omega') \mathcal{D}[P_{\omega'}^{\dagger}] \rho_I \right]$

b) in bare energy basis

$$\dot{\rho}_I(t) = -i\left[-\frac{\eta}{2}\sigma_z^{(e)} - \frac{\Omega}{2}\sigma_x^{(e)}, \rho_I(t)\right] + \Gamma_\varphi \mathcal{D}[\sigma_z^{(e)}]\rho_I(t) + \Gamma_r \mathcal{D}[|g\rangle\langle e|]\rho_I(t)$$

Solve Bloch vector in steady state

$$\rho(t) = (\mathbb{I} + x_d(t)\sigma_x^d + y_d(t)\sigma_u^d + z_d(t)\sigma_z^d)/2$$

populations:

$$\dot{z}_d = (\Gamma_- - \Gamma_+) - (\Gamma_- + \Gamma_+) z_d$$

RWA in

a) in dressed basis (Rabi >> decay) (PRL 95 106901, 2005)

Asymmetric peak Saturated on resonance b) in bare energy basis (Rabi << decay) (PRL 96 017405, 2006)

Symmetric (Lorentzian) peak Unsaturated

Problem...

strong driving approx \Rightarrow saturation on resonance

+ asymmetric peaks

Dynamical master equation

von Neuman equation

• Solve by expansion $\bar{\rho}_s = \sum_{\nu \in \{\pm \Omega', 0\}} \frac{\bar{\rho}_{\nu}}{s - i\nu}.$

$$\tilde{J}(x) = \sum_{q} \frac{|g_q|^2}{\omega_q + x}$$

Dynamical master equation

 Keeping only DC pole in p and matching residues at s=0 gives traditional Lindblad master eqn...

lm(s)

 $+i\Omega'$

Re(s)

 \overline{O}

$$0 = \sum_{\omega'} J(\omega') \mathcal{D}[P'_{\omega}] \rho_{ss} + iF(\omega')[P^{\dagger}_{\omega'}P_{\omega'}, \rho_{ss}]$$

Include dynamical poles...*

$$i\nu'\bar{\rho}_{\nu'} = \sum_{\substack{\omega' + \nu - \nu' \in \mathcal{W} \\ - (\hat{J}_{+}(\omega' - \nu')\bar{\rho}_{\nu}P_{\omega' + \nu - \nu'}^{\dagger} - \psi' \in \mathcal{W}}} \left(\hat{J}_{+}(\omega' - \nu') + \hat{J}_{-}(\omega' + \nu)\right) P_{\omega'}\bar{\rho}_{\nu}P_{\omega' + \nu - \nu'}^{\dagger} - i\Omega' - i\Omega'$$

$$\bar{\rho}_{s} - \rho_{0} = \sum_{i, i'} \left(i\tilde{J}(\omega' + is) - i\tilde{J}(-\omega'' - is) \right) P_{i} \bar{\rho}_{s-i(i'+i')} P_{i''} - \left(i\tilde{J}(\omega' + is)\bar{\rho}_{s-i(i'+i')} P_{i''} P_{i''} - i\tilde{J}(-\omega'' - is) P_{i''} P_{i''} \bar{\rho}_{s-i(i'+i'')} \right)$$

No Problem...

 $M = \begin{pmatrix} a \\ a \\ -1 & 0 \end{pmatrix}$

strong driving approx \Rightarrow saturation on resonance

+ asymmetric peaks

strong decay approx ⇒ no inversion + Lorentzian peaks

neither approx ⇒ asymmetric + unsaturated

Preliminary Results

note the wiggles...