


Outline 

Two-qubit gates as the group SU(4) 
•  local invariants 
•  Cartan decomposition and three-torus 
•  Weyl chamber and local equivalence classes 
•  local equivalence classes of perfect entanglers 

Optimal control applications 

Two-qubit gates as a metric space 
•  metric and invariant volume  
•  how large are control targets?  
•  what is the volume of the space of perfect entanglers? 

Metric properties and applications: 
P. Watts et al., submitted (2013) 

Geometric theory and applications: 
Phys. Rev. A 67, 042313 (2003) 
Phys. Rev. Lett. 91, 027903 (2003) 
Phys. Rev. A 69, 042309 (2004) 
Phys. Rev. Lett. 93, 020502 (2004) 

Optimal control applications: 
Phys. Rev. A 84, 042315 (2011) 
& a work in progress 
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where U(1) is a global phase and SU(4) is the group of four-by-four unitary 
matrices with unit determinant.  

Examples: in the standard computational basis: 

Two-qubit gates 

Unitary operators acting on the state of two quantum bits 

form the group of four-by-four unitary matrices U(4): 



SU(4) group and su(4) algebra 

SU(4) group su(4) algebra 

Generators: Example: 



Cartan decomposition of su(4) 

Cartan, maximal Abelian, subalgebra: 



Cartan decomposition of SU(4) 
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Parameter counting: 
    6       +        3       +       6     =    15   =    42 - 1 

If two gates have the same A in the Cartan decomposition, they are  
locally equivalent: 



Local equivalence and construction of local invariants 

Construction: 

2) transformation into the Bell basis 

Two gates are locally equivalent if they differ only by local operations 

J. Makhlin, QIP, 1, 243 (2003) 

1) Cartan decomposition (fix: the standard computational basis) 

J. Zhang, J. Vala, S. Sastry, K.B. Whaley 
Phys. Rev. A 67, 042313 (2003) 



Local equivalence and construction of local invariants 

3) elimination of the local part O1  

4) characteristic equation of m and elimination of O2 

J. Zhang, J. Vala, S.Sastry, K.B. Whaley 
Phys. Rev. A 67, 042313 (2003) 

J. Makhlin, QIP, 1, 243 (2003) 

F2 determines the spectrum on the Makhlin matrix m:  tr(m) = tr(F2) 

Local invariants 



Local equivalence classes 

σ(F2) = {e                 , e                , e                  , e                   } i(c1-c2+c3)     i(c1+c2-c3)     -i(c1+c2+c3)     i(-c1+c2+c3) 

Uniquelly characterize a class of gates that are equivalent up to local, single 
qubit, transformations; they define local equivalence classes [U]. 

Local invariants: 

Relation between the Cartan decomposition and local invariants: 



Weyl chamber 

T3 

Non-local factor A of the Cartan decomposition has the structure of three-torus 

Local invariants 

are invariant with interchanges of c1, c2, and c3 with & without sign flips: 

symmetry  
reduction 

symmetry  
reduction 

Weyl chamber 
J. Zhang, J. Vala, S.Sastry, K.B. Whaley 
Phys. Rev. A 67, 042313 (2003) 



Examples 

[CNOT] 

[DCNOT] 

[SWAP] 

[B] 

[SWAP1/2] 

Each point inside of the Weyl chamber corresponds to one local equivalence class.  
This is unique with except of the base of the Weyl chamber.  

[I] 

[I] 



[DCNOT] 

[SWAP] 

[B] 
[CNOT] 

Perfect entanglers 
Definition 
A two qubit gate is called a perfect entangler if it can produce  
a maximally entangled state from a product state. 

Theorem 
A two qubit gate U is a perfect entangler if and only if  the convex hull  
of the eigenvalues of the Makhlin matrix m(U) containes zero. 

Examples 
CNOT 
σ[m(CNOT)]  = {1, 1, -1, -1} 

J. Zhang, J. Vala, S.Sastry, K.B. Whaley 
Phys. Rev. A 67, 042313 (2003) 



Weyl chamber and local equivalence classes 

[CNOT] 

[DCNOT] 

[SWAP] 

[SWAP1/2] 

[I] 

[SWAP] 
[I] 

[SWAP1/2] 

[CNOT] 



Generation of non-local gates: example 

H = -(αEL/2) (σx
1 + σx

2) + α2 EL σy
1 σy

2 

[CNOT] 

perfect  
    entanglers 

Weyl chamber trajectory: 
curvature                   translation 

Josephson junction charge-coupled qubits 



Optimal control applications: 
Phys. Rev. A 84, 042315 (2011) 
&  
a work in progress 



Optimal control 

Optimization target is defined not as a specific target gate Utarget  
but rather its local equivalence class [Utarget], i.e. SU(2)xSU(2) orbit of Utarget . 

identity 

ε-neigborhood 

identity 

[Utarget] Utarget 



Optimal control 
M.M. Muller et al.,  
Phys. Rev. A 84, 042315 (2011). Direct optimization functional 

with possible additional terms 

finite pulse fluence loss of population 

Optimization functional based on local invariants 

Krotov iteration 



Case I: Effective spin model 

Trapped polar molecules with 2Σ1/2 electronic ground state subject to a near  
resonant microwave driving inducing strong dipole-dipole coupling: 

SrF molecules in optical lattice with a=300 nm and 15GHz microwave fields 
with different polarizations 

envelope function 

drift control 

cw field:   
CNOT: δ = 1.2 kHz and Ω = 590 kHz 
B-gate: δ = 1.2 kHz and Ω = 4.74 MHz  

pulsed field:   
CNOT: δ = 50 kHz and Ω0 = 1.81 MHz 
B-gate: δ = 84 kHz and Ω0 = 1.81 MHz   

M.M. Muller et al.,  
Phys. Rev. A 84, 042315 (2011). 



Case I: Results 
M.M. Muller et al.,  
Phys. Rev. A 84, 042315 (2011). 



Case II: Rydberg gate with trapped neutral atoms 

Atoms of 87Rb trapped by optical tweezers with a non-local gate implemented 
by simultaneous near resonant two-photon transition to Rydberg states  

M.M. Muller et al.,  
Phys. Rev. A 84, 042315 (2011). 

|0> = |5s1/2, F = 2, MF = 2> 
|1> = |5s1/2, F = 1, MF = 1> 

The Hamiltonian for a single trapped atom in RWA 

The total two-atom Hamiltonian 

ωR = 795 nm 
ωB = 474 nm 
δR = 2π.600 MHz 
δB = 0 
ΩR,0 = ΩB,0 = 2π.260 MHz 

|i> = |5p1/2, F = 2, MF = 2> 
|r>  = |58d3/2, F = 3, MF = 3> 

Rydberg-Rydberg interaction 
50MHz at r0 = 4µm, i.e. 10 ns in |rr> to pick the phase π    



Case II: Results 
M.M. Muller et al.,  
Phys. Rev. A 84, 042315 (2011) 



Case II: Effect of spontaneous emission 

M.M. Muller et al.,  
Phys. Rev. A 84, 042315 (2011) 

spontaneous  
emission 



Perfect entanglers 

Optimization target is defined not as a specific local equivalence class [Utarget], 
i.e. SU(2)xSU(2) orbit of Utarget , but the full set of perfect entanglers 

ε-neigborhood 

identity 

[Utarget] 

identity 

[perfect entanglers] 



Optimal control: perfect entanglers 

Direct optimization functional 

is to be based on the function 

which goes to zero when the evolution operator reaches perfect entanglers 

Numerical experiment:  Tommaso Calarco (first results),  
   Christiane Koch (in progress) 



Metric properties and applications: 
P. Watts et al., submitted (2013) 



Decomposition and parametrisation of SU(4) 

1) Local part 

2) Non-local part 

Restriction to the Weyl chamber: 

& 

Parameters: 



Invariant measure 

Calculation of the Haar measure for SU(4) and its Cartan subalgebra: 

We start with  the Maurer-Cartan form 

which can be rewritten in terms of Lia algebra generators and coordinate 1-forms 

where Θ is an NxN matrix whose determinant gives us the Haar measure 

The results for SU(2): 



Haar measure for SU(4) 

Local parts: 

Non-local part: 

The full SU(4): 



What is the size of control targets? 

Control targets in the Weyl chamber can be defined as  
a small neigborhood of the local equivalence class,  
e.g. a cube of the volume VWc = a3. 

The corresponding invariant volume in the full SU(4) depends on  
the location in the Weyl chamber 

c3 = π/12  c3 = π/6  c3 = π/4  



[DCNOT] 

[SWAP] 

[B] 
[CNOT] 

Examples 



Invariant volume of perfect entanglers 

The perfect entanglers occupy a half of the volume of the Weyl chamber 
but the invariant volume of the perfect entanglers in the full SU(4) is 
the integral  

over the perfect entanglers in the Weyl chamber  



Invariant volume of perfect entanglers 

Perfect entanglers occupy over 84% of the total volume of SU(4)  

The perfect entanglers occupy a half of the volume of the Weyl chamber 
but the invariant volume of the perfect entanglers in the full SU(4) is 
the integral  

over the perfect entanglers in the Weyl chamber  



Targeting perfect entanglers as clay pigeon shooting  



Conclusions 
Geometric theory of two-qubit gates 
•  provides powerful representation of two-qubit local equivalence classes;  
•  allows insights into structure and properties of perfect entanglers; 
•  gives intuitive picture of two-qubit quantum evolution; 
•  enables analytical construction of two-qubit quantum circuits; 
•  leads to new gates (B – gate) and implementations. 

Optimal control applications 
•  relaxing constraints on the optimization target relaxes constraints on  
  physical interactions, optimization process and implementation; 
•  optimization to a given local equivalence class converges faster and 
  more reliably; 
•  optimization to the set of perfect entanglers promises to maximize 
  entanglement generation, preliminary results are quite encouraging 

Metric properties 
•  derived expressions for the invariant length element and volume in 
  the representation particularly suitable for quantum information processing; 
•  true size of optimization targets; the largest in the center of the Weyl  
  chamber; 
•  perfect entanglers are (almost) everywhere! 




