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Phenomena associated with chaotic dynamics:
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Transport Thermalization Butterfly effect

Ultimate goal: understand these phenomena and their relation in quantum systems, relate
them to gravity through AdS/CFT

Goal of talk:

* Develop an effective theory of entanglement dynamics in the hydrodynamic limit
e Study its interplay with other chaotic phenomena

« Comment on relations to tensor network approaches to AdS/CFT



Setup:

Quantum chaotic dynamics

Degrees of freedom interacting strongly through local
chaotic Hamiltonian.

In highly excited state, out of equilibriumat¢ =0,

in equilibrium for t — oo,

Foundational question in statistical physics. Subject of
intense current activity in HEP, CMT, Ql, and AMO
experiments.

Fully isolated from
environment




Quantum chaotic dynamics

Setup: _ _ Quantum system
* Degrees of freedom interacting strongly through local with many

chaqtic Ham_iltonian. - interacting degrees
* In highly excited state, out of equilibriumat¢ =10, L

in equilibrium for ¢ — oo,

* Foundational question in statistical physics. Subject of
intense current activity in HEP, CMT, Ql, and AMO
experiments.

Fully isolated from
environment

Study the setup using holographic duality:

* A QFT settling to thermal equilibrium is dual to a collapsing I I
black hole.

* No small parameters, holography is indispensible in

understanding real time quantum dynamics.
* Entanglement plays a crucial role in thermalization.




Hydrodynamics

We have an effective theory for describing conserved densities.

* Hydrodynamics applies universally for all chaotic systems.
Generalized hydrodynamics for integrable systems.

* Navier-Stokes equations: 9,v + (v - V)v —vV?v = —Vp




Hydrodynamics

We have an effective theory for describing conserved densities.

* Hydrodynamics applies universally for all chaotic systems.
Generalized hydrodynamics for integrable systems.

* Navier-Stokes equations: 9,v + (v- V)v — vV?v = —Vp

* Relativistic hydro from hep-th POV is an EFT based on
systematic long distance, late time expansion. Fluid variables:

Tup = (p+ p)ugup + pNap + g

* Hydrodynamics follows from the conservation of 745 . Solution
determines (Tu5) out of equilibrium.




Hydrodynamics

We have an effective theory for describing conserved densities.

* Fluid/gravity constructs black holes with bumpy horizons
from fluid flows. [Bhattacharyya et al.]

dz
AT (z)
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ds? = [2ua(x)dxadz - [nab + (1 —a (

)) ua(x)ub(:c)] dx®da®
+ (gradients)

e Alternative history: String theorists discover hydrodynamics
by studying AdS black holes.

Uniform black brane I




Hydrodynamics

We have an effective theory for describing conserved densities.

* Fluid/gravity constructs black holes with bumpy horizons
from fluid flows.

1

ds* == [2ua(x)dxadz + [nab + (1 —a ( 4;;?33))) ua(x)ub(x)] dxadxb]

+ (gradients)

e Alternative history: String theorists discover hydrodynamics
by studying AdS black holes.

* Interested in more data than (T45): entanglement entropy,
butterfly effect, etc.

* | want to follow the “alternative history” path to discover a
hydrodynamic effective theory of entanglement dynamics
(and operator growth).

* Hydrodynamics is universal, there is evidence for the
universality of the effective theory of entanglement
hydrodynamics.

Quantum system

with many

interacting degrees

of freedom

%

Ug ()

T(x)

Uniform black brane
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Transport
* Hydro as an EFT
* Holography for real time dynamics

Thermalization

* Entanglement entropy as a probe
* Membrane theory is the EFT

* Interplay with hydro

Comments on tensor networks
* Membrane theory from random circuits
* Interplay with operator growth

Conclusions and open questions



&
l
g

Outline

Thermalization

* Entanglement entropy as a probe
* Membrane theory is the EFT

* Interplay with hydro



Quantum thermalization and subsystems

Quantum thermalization
 Pure state with nonzero energy density: [¢(0))
Unitary time evolution: |1 ()) = e “Ht}2)(0))
e PH
o p(t) = [Y() W) A -7~ cannot mean thermalization.

p(t) encodes all the information in [¥(0)), but at late times in
a very nonlocal way.

Fully isolated from
environment




Quantum thermalization and subsystems

Quantum thermalization

Pure state with nonzero energy density: [1/(0))
Unitary time evolution: |1()) = e~ |4 (0))
e~ PH
p(t) = [9(6) (¥ ()| # -7~ cannot mean thermalization.

p(t) encodes all the information in [¥(0)), but at late times in
a very nonlocal way.

Consider subsystems, reduced density matrix:
pa =Tz [¢) (Y]

(ca) e M
Thermalization: pa(t) — py " (8) = Tr -

For t — oo, in the thermodynamic limit A — oo, with 3
determined by the energy density. Entanglement is crucial in
making this possible.

Fully isolated from
environment




Entanglement entropy

Entanglement entropy is a good diagnostic of thermalization,
we focus on this quantity.
In ground states of local Hamiltonians the entropy scales
with the area:
area ()

SAZ#é.d—_Q—F

. 5
Typical

_ _ _ _ A point inside

A generic state in the Hilbert space shows volume scaling: unentangled

Sa = sgmVvol(A) + ... <« with outside

Y

Typical
point inside
entangled
with outside
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Entanglement entropy is a good diagnostic of thermalization,
we focus on this quantity.

Entanglement entropy

In ground states of local Hamiltonians the entropy scales
with the area:

area(:
SA:#éd——(Q)_i_

Typical
_ _ _ _ A point inside
A generic state in the Hilbert space shows volume scaling: unentangled
Sa = sgmVvol(A) + ... <« with outside

Purest setup is a quench: start with ground state of a local
Hamiltonian, change the Hamiltonian suddenly, and let the
system evolve. (No transport.) Typical
point inside
entangled
with outside




Entropy in the hydrodynamic limit

Qualitative picture of entanglement entropy at time t of a region of characteristic size R,
R,t > tioc [Cardy, Calabrese; Hartman, Maldacena; Liu, Suh]

A A
7
UV U ///
/
N7 i [
IR
S?(t)g . 154 = Sth vol(A) + ... \a

tloc < R

One-point functions
reach thermal value at

tloc ~ 6



Entropy in the hydrodynamic limit

Qualitative picture of entanglement entropy at time t of a region of characteristic size R,
R,t > tioc [Cardy, Calabrese; Hartman, Maldacena; Liu, Suh]
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One-point functions
reach thermal value at

tloc ~ 6



Entropy in the hydrodynamic limit

Qualitative picture of entanglement entropy at time t of a region of characteristic size R,
R,t > tioc [Cardy, Calabrese; Hartman, Maldacena; Liu, Suh]

A A A
\\J{ ____________ \ ] e
Z
JL </ I t
S?(t)g . [ =swmvol(A) + ... B

Sa = UE::SthAEt—l—

: : >
toe K R tS ~ R ¢

One-point functions
reach thermal value at | | Saturation takes ts ~ R

tloc ~ similarly to (¢(R) ¢(0))



Membrane theory of entanglement dynamics

Can reformulate holographic surface extremization in d+1 dimensions as membrane
minimization in d dimensions in the limit R,t > tioc. A

* Detailed understanding of HRT surfaces. The surface has
three parts:

1. Outside the horizon part gives (divergent) area law.
2. Behind the horizon region.

3. Behind the shell part gives entropy in the vacuum.




Membrane theory of entanglement dynamics

Can reformulate holographic surface extremization in d+1 dimensions as membrane
minimization in d dimensions in the limit R,t > tioc. A

* Detailed understanding of HRT surfaces. The surface has
three parts: (v, ... TTEYTTTTTTyoS

1. Outside the horizon part gives (divergent) area law.
2. Behind the horizon region.

3. Behind the shell part gives entropy in the vacuum.
* Only the 2. part contributes to the extensive part of the entropy.

t
S(t) = stn R4 Sont (E) T




Membrane theory of entanglement dynamics

Can reformulate holographic surface extremization in d+1 dimensions as membrane
minimization in d dimensions in the limit R,t > tioc. A

* Only the 2. part contributes to the extensive part of the entropy.
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* Push HRT surface to the boundary along constant infalling time.
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* Only the 2. part contributes to the extensive part of the entropy.
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S(t> — SthRd_l‘Sext (E) + ...

* Push HRT surface to the boundary along constant infalling time.
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Membrane theory of entanglement dynamics

Can reformulate holographic surface extremization in d+1 dimensions as membrane
minimization in d dimensions in the limit R,t > tioc. A

* Only the 2. part contributes to the extensive part of the entropy.

S(t) = stn R ' Sext (i> L Sy

R

* Push HRT surface to the boundary along constant infalling time.

e Scalinglimit: =/ —- Rx¥, z—z E
Area functional independent of the derivatives of z. Solve (‘-
algebraic EoM, plug back into action to derive membrane theory. / t

€ (v)

Horizon ~ boundary
A

Projection

Shell



Membrane theory of entanglement dynamics

Can reformulate holographic surface extremization in d+1 dimensions as membrane

minimization in d dimensions in the limit R,t > tioc. :
Horizon ~ boundary

* Membrane theory:

i1y = E) -
SA] = s [ d7€ VY —=
1 — 0?2
Membrane is projection of HRT to boundary. £(v) is t v
repackaging of geometry, independent of quench details.
Shell
t
-
t=0
(n-%)




Membrane theory of entanglement dynamics

Can reformulate holographic surface extremization in d+1 dimensions as membrane

minimization in d dimensions in the limit R,t > tioc.

* Membrane theory:

&€ (v)

S[A] = sth/dd—lg VY

V1 —12

Horizon ~ boundary
A

t

Membrane is projection of HRT to boundary. £(v) is v
repackaging of geometry, independent of quench details.

e Using the NEC, can prove the following properties of £(v) .
£(v) can be thought of as a transport coefficient.

E(v)
0.8r ’
VE /" 0
V4 B
0.67 /
04r .
Monotonic
Convex
0.2
“““““““““ v

\4

Shell

t
L:X /YK
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Applications

EE for strip, sphere, cylinder regions in the hydro limit is analytically solvable.

S
e Strip: 2




Applications

EE for strip, sphere, cylinder regions in the hydro limit is analytically solvable.
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Applications

EE for strip, sphere, cylinder regions in the hydro limit is analytically solvable. [V ; MV |
: Salt)
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Applications

EE for strip, sphere, cylinder regions in the hydro limit is analytically solvable. [V ; MV ]

e Strip: Salt
S(T)/S(e)
1.0} I — —
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e Stadium shape:

ratio=2.5,t=1.00
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* Simple bound on saturation time from operator growth: [MM, Stanford] ts = R/vp
For elongated shapes in 4D we find: [ts = R/vp
Black holes often saturate entanglement entropy the fastest.



Interplay with hydro

The membrane theory is robust, can be generalized away from global quenches.

* Fluid/gravity black brane dual to an inhomogenous state in local thermal equilibrium.
To subleading order, we get the membrane coupled to hydrodynamics:

— d—1 S ajﬂ V(T % uiz))
S—/d Sﬁth()er"" (z) V14 (n-u(x))?




Interplay with hydro

The membrane theory is robust, can be generalized away from global quenches.

* Fluid/gravity black brane dual to an inhomogenous state in local thermal equilibrium.
To subleading order, we get the membrane coupled to hydrodynamics:

_ d—1 S azﬂ V(x) = (nU(x))
S—/d Sﬁth()er"" ()_\/1+(n-U($))2

 Adaptable to other inhomogenous setups, can incorporate 8/R and 1/)\ corrections
without change in the structure of the membrane theory. 1/N corrections would be
most interesting.

e Membrane theory is versatile, has connections to operator growth and
hydrodynamics, and has all the features to be a universal theory.



Summary

Features of the thermalization:

* Conserved densities described by hydro.

e State of the entire system cannot become thermal.
Small subsystem thermalize by becoming entangled
with the rest of the system.

Sa(t) = SEV(B) = s (B) vol(A)
Captures the essence of thermalization.

Goal: Find effective theory (akin to hydro) of

entanglement dynamics.

e Alternative history method: Discovered membrane
theory by studying AdS black holes, has structure
applicable to all chaotic theories.

* Inthe following conduct further tests. Elucidate
connections to other manifestations of chaotic
dynamics.

S(T) / S(c0)
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Comments on tensor networks
* Membrane theory from random circuits
* Interplay with operator growth




Membrane theory from random circuits

The same description of entanglement dynamics arises in CMT.
 Random guantum circuit model for the evolving wave function.
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The same description of entanglement dynamics arises in CMT.
 Random guantum circuit model for the evolving wave function.
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Membrane theory from random circuits

The same description of entanglement dynamics arises in CMT.
 Random guantum circuit model for the evolving wave function.
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Minimal membrane phenomenology of entropy dynamics. [Jonay, Huse, Nahum]



Membrane theory from random circuits

The same description of entanglement dynamics arises in CMT.
 Random guantum circuit model for the evolving wave function.

]
I
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[
* Minimal cut computes the entropy. [Nahum, Ruhman, Vijay, Haah|
\W4
A : A
Coarse graining
I — >
[
I t t
T e S = Sth/ dt’ E(v) v
I 0

Minimal membrane phenomenology of entropy dynamics. [Jonay, Huse, Nahum]

* Analytic arguments in Floquet systems. [Nahum, Zhou] Evidence in chaotic spin chains.
[Jonay, Huse, Nahum]

* Remarkable unification of CMT and HEP approaches: Membrane description of EE
growth in quenches.



Tensor networks and holography

The analogy between minimal cuts and the RT surface computing entanglement entropy
has inspired toy models of holography. u=-3

 AdS/MERA analogy, perfect and
random tensor networks

u=—2

Suggestive results for maximal volume slice.
But HRT surfaces for different shapes do not lie on same Cauchy slice.




Tensor networks and holography

The analogy between minimal cuts and the RT surface computing entanglement entropy

has inspired toy models of holography. - - i ’ =
AdS/MERA analogy, [Swingle] perfectand X v K A
random tensor networks [Pastawski et al; A A . = A,
HaYden et al] u=-1 A4 @ [ | [ |
LA £ ) A A A A
B A(La) c o

Suggestive results for maximal volume slice. [Hartman, Maldacena; Roberts, Stanford,
Susskind] But HRT surfaces for different shapes do not lie on same Cauchy slice.
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Tensor networks and holography

Analogy between minimal cuts and the RT surface has inspired toy models of holography.

* Suggestive results for maximal volume slice.
But HRT surfaces for different shapes do not lie on same Cauchy slice.

A B ,

Projection 4
< 7/ I
t

>

EoM: z = f(v?)

 Entanglement of local operator with growing footprint is computed by membrane in
time fold geometry.

* Quantitative connection to TNs through EoM, bulk geometry encoded in £(v).
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Conclusions and open questions



Universality classes of entropy dynamics

| propose that there are two universality classes of entropy dynamics at
long distances and late times (in translationally invariant systems).

e 2dintegrable models, RCFTs, d>2 free theories are described by the
quasiparticle theory.

* The holographic results can be reformulated in terms of a
membrane theory, which then can be adopted to any chaotic
system. Applies to holographic theories, random circuits, evidence
for chaotic spin chains.

* Isthere something in between?

 Analogous to the dichotomy between generalized hydrodynamics
applicable to integrable systems (giving ballistic transport) and
hydrodynamics (describing diffusive transport).



Entropy in the hydrodynamic limit

Qualitative picture of entanglement
entropy at time t of a region of
characteristic size R, R, t > tioc .
[Cardy, Calabrese; Hartman,
Maldacena; Liu, Suh]

EE in free scalar theory for a disk, dots
are data points, line is quasiparticle
theory [Cotler, Hertzberg, MM,
Mueller]

EE in holographic theories for a disk,
data collapse, solid line is membrane
theory, deviation is controlled by 1/R
[MM,]

Sal(t)

t

Sa = sgnvol(A) + ...

Sa Z’UEESthAgt—I—...

> 1

tloc < R

Boundary State Quench (3 = 10) in 2+1 Dimensions
00, RMax = 1200, NR = 1200, LMax = 300)
T T T T
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Summary

Phenomena associated with chaotic dynamics:

* Hydrodynamics is the EFT for transport, serves as target

* Universality classes of thermalization:
Quasiparticle theory vs Membrane theory

e Derived the membrane theory of entanglement dynamics from
holography. Evidence for universality from CMT

S(T) / S(eo)
1.0t

0.8

0.61

0.4

0.2r

N7
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T/R
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Summary

\ Phenomena associated with chaotic dynamics:
S — . * Hydrodynamics is the EFT for transport, serves as target
- — , * Universality classes of thermalization:
Quasiparticle theory vs Membrane theory
€ It +& 7 4+ Derived the membrane theory of entanglement dynamics from
holography. Evidence for universality from CMT
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* Uncovered interplay with hydro, chaos and TNs:
» Membrane couples to hydrodynamics
» Key role of vg, bounds on entropy, operator EE picture
» Membrane is a cut through TN, TN is obtained after solving

bulk EoMs




Summary

Phenomena associated with chaotic dynamics:

Hydrodynamics is the EFT for transport, serves as target
Universality classes of thermalization:

Quasiparticle theory vs Membrane theory

Derived the membrane theory of entanglement dynamics from
holography. Evidence for universality from CMT

S(T) / S(eo)
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0sl N 7
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T/R

Uncovered interplay with hydro, chaos and TNs:
» Membrane couples to hydrodynamics
» Key role of vg, bounds on entropy, operator EE picture
» Membrane is a cut through TN, TN is obtained after solving

bulk EoMs

Rich applications
» Entropy cone inequalities generalized to time dependent
settings. [Hayden, Headrick, Maloney; Bao et al.; Bao, MM]
» Bit threads reformulation. [Freedman, Headrick; Agon, MM]
Membrane theory has all the features to be a universal theory.



Open questions and outlook for gravity

Open questions and some hints
* What does the membrane theory imply for holographic RG?
Hint: The metric inside the horizon does not seems to be organized by scale.

7
It

Organized by RG scale
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Equally important at
the longest scales



Open questions and outlook for gravity

Open questions and some hints
* What does the membrane theory imply for holographic RG?
Hint: The metric inside the horizon does not seems to be organized by scale.
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* Are new quantum extremal surfaces, islands be captured by the membrane theory?
Hint: It looks plausible that 1/N corrections can be captured by the membrane theory. It
may be that we get multiple minimal membranes for evaporating BH.

Equally important at

the longest scales
Organized by RG scale



Open questions and outlook for gravity

Open questions and some hints
* What does the membrane theory imply for holographic RG?
Hint: The metric inside the horizon does not seems to be organized by scale.
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* Are new quantum extremal surfaces, islands be captured by the membrane theory?
Hint: It looks plausible that 1/N corrections can be captured by the membrane theory. It
may be that we get multiple minimal membranes for evaporating BH.

Equally important at

the longest scales
Organized by RG scale

* Isthe membrane theory a good starting point to getting gravitational dynamics out of

entanglement?
Hint: Slogan: “Gravity is the hydrodynamics of entanglement.”May have to go to shorter
times and distances in CFT to see dynamical geometry.






Quasiparticle model

Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs,
subsequently travel freely at the speed of light isotropically.

e Leads to linear growth with v = 1in 2d.

* Higher dimensions: entanglement spreading depends
on entanglement pattern on the light cone u[Ly].
Contribution from each light cone has to be added.
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Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs,
subsequently travel freely at the speed of light isotropically.

e Leads to linear growth with v = 1in 2d.

* Higher dimensions: entanglement spreading depends
on entanglement pattern on the light cone u[Ly].
Contribution from each light cone has to be added.

Bound on the entanglement speed from SSA: @
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Quasiparticle model

Calabrese-Cardy model: energy injection from quench creates a finite density of EPR pairs,
subsequently travel freely at the speed of light isotropically.

e Leads to linear growth with v = 1in 2d.

* Higher dimensions: entanglement spreading depends
on entanglement pattern on the light cone u[Ly].
Contribution from each light cone has to be added.

Bound on the entanglement speed from SSA: @

(é=L
UESUSEEPR) _ (%57) <U(E§BH) {

val(3)
Slower than holography.
* | Instrongly coupled systems, entanglement grows

faster than what’s possible for free particles streaming
at the speed of light!

* Consider the effect of interactions: tensor network picture
emerging from scattering particles is natural.



Free field theory and the quasiparticle model

In a free theory for Gaussian states we can
use the correlation matrix to compute EE.

 Time evolution of a Gaussian initial
state is Gaussian (with time dependent
complex kernel).
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In a free theory for Gaussian states we can
use the correlation matrix to compute EE.

 Time evolution of a Gaussian initial
state is Gaussian (with time dependent
complex kernel).

e Correlation matrix determines all
correlation functions due to Wick’s
theorem:

X1 = (457,) : Ix1, x5l =i J1s

Uy

(Wl{xr, xs )

DO | —

I'r;g =



Free field theory and the quasiparticle model

In a free theory for Gaussian states we can
use the correlation matrix to compute EE.

 Time evolution of a Gaussian initial
state is Gaussian (with time dependent
complex kernel).

e Correlation matrix determines all
correlation functions due to Wick’s
theorem:

X1 = (457,) : Ix1, x5l =i J1s

Uy

Iy = %<¢HXI , X )

* The symplectic eigenvalues of the
correlation matrix give the eigenvalues
of the reduced density matrix:
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( 0 diag (vx)



Free field theory and the quasiparticle model

In a free theory for Gaussian states we can Strip
use the correlation matrix to compute EE. . et v Lt e S

 Time evolution of a Gaussian initial
state is Gaussian (with time dependent
complex kernel).

e Correlation matrix determines all
correlation functions due to Wick’s

theorem:
XI — (iz) ) [XI? XJ]:iJIJ
1
Pry = 5Whxs, xa ) Sphere
* The symplectic eigenvalues of the ‘ o e 50

correlation matrix give the eigenvalues
of the reduced density matrix:

=Sy, SJST =17,

- diag (&) 0 )
[ = STST = .
( 0 diag (vx)

 Numerical results for 3d boundary state
quench for scalar field.




Entropy cone

Entanglement entropy in static holographic states obeys inequalities, that are not true in
general in QM.

 The best known one is the monogamy of mutual information.
It can be proven using the same steps as in the proof of SSA.

S(AB) + S(BC) + S(AC) > S(A) + S(B) + S(C) + S(ABC)
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 The inclusion-exclusion proof method can be used to derive many-party inequalities.
Holography is not essential, only need that the entropy is proportional to a
partionable geometric minimization problem.



Entropy cone

Entanglement entropy in static holographic states obeys inequalities, that are not true in
general in QM.

The best known one is the monogamy of mutual information.
It can be proven using the same steps as in the proof of SSA.

S(AB) + S(BC) + S(AC) > S(A) + S(B) + S(C) + S(ABC)

The inclusion-exclusion proof method can be used to derive many-party inequalities.

Holography is not essential, only need that the entropy is proportional to a
partionable geometric minimization problem.

HRT is an extremization of codimension-2 surface, no proof (or counterexample) is

known for many-party inequalities. Inclusion-exclusion applies to the membrane
theory, hence proof for time dependent states (large regions, late times).



Bit threads

The Ryu-Takayanagi prescription can be reformulated in the language of bit threads.
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*  Maximize / Vhn,w!
A
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* Membrane theory can also be similarly reformulated without reference to holography.
Only one constraint changes

Vu’w“:O, H(wt)—|’lﬁ|20
H (wy) is the Legendre transform of £(v):
H(w) =EW) —v&'(v), w=-E(v)

 The map that reconstructs the HRT surface from the minimal membrane can be used
to push the membrane theory bit thread into the bulk.

* Membrane theory is versatile, has connections to operator growth and
hydrodynamics, and has all the features to be a universal theory.
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Entanglement entropy obeys inequalities, natural to consider bounds in the quench setup.

e v <1 can be proven using Lorentz invariance and the SSA inequality, |[Casini, Liu,
VIM | or the monotonicity of relative entropy. [Afkhami-Jeddi, Hartman|

* Monotonicity of (thermal) relative entropy for
subsystems combined with emergent vg light
cones at finite temperature in chaotic systems:

SIA(8)] < S[A'(X)] + sen (VA®)] = VIA' (X))

Gives bound for all times. Can be combined
with another proposed inequality. [IVIIV], Stanford]

* Consequences:

insc

vg Svp, lg 2
VB
In holography, for spheres saturation is often as fast as possible. [Liu, Suh; MM,

Stanford; MM, ]
* Membrane theory proof: there exists a maximal membrane tension compatible with
the general properties discussed before.
VE

Eua(®) = v+ (1= 22 ) ol (Jo] < vn)

The resulting minimal membrane is a combination of a cylinder and the cone
saturating the combined inequalities. [VIM,]



