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Conformal Bootstrap

The bootstrap has been very successful in constraining the space of CFTs.

El-Showk Paulos Poland Rychkov Simmons-Duffin Vichi

Particularly useful for theories at the edge.



Conformal Bootstrap

The bootstrap has been very successful in constraining the space of CFTs.

3d Op2q island
[Chester, Landry, Liu, Poland, Simmons-Duffin, Su, Vichi]



Two broad uses of the bootstrap:

§ Carving out theory space:
rule out inconsistent regions of putative CFT data.

§ Solving CFTs of special interest:
corner them by making a few physical assumptions.



AdS quantum gravity = CFT

Two broad uses of the bootstrap:

§ Carving out the space of AdS quantum gravity theories:
rule out effective field theories with no UV completion (“swampland”).

§ Solving theories of special interest:
corner them by making a few physical assumptions.
E.g., bootstrap string/M-theory models with high supersymmetry.



Some general questions:

§ What is the “simplest” theory of AdS quantum gravity in D dimensions?

§ Does it require additional states well-below the Planck scale?
(Such as strings or KK modes)

§ Or does a theory (or theories) of “pure gravity” exist?
(Only multigravitons and Plankian microstates)

A non-perturbative definition of “pure gravity”:
an infinite sequence of CFTs with increasing central charge, such that for cÑ8 the only
states with finite ∆ are multi-traces of Tµν . (Very counterintuitive from QFT perspective.)

Such CFTs would live at the edge: prime targets for the bootstrap.

Rapid analytic developments in the bootstrap: we begin to have the right tools.



Question particularly sharp for AdS3/CFT2:
multi-graviton states „ Virasoro module of the identity.

Weakly-coupled AdS bulk ðñ `AdS " `Planck ðñ c " 1

c
12 = BTZ blackhole threshold

Today I will focus on the simplest bootstrap constraint for CFT2: modular invariance.



Modular bootstrap

Full partition function

Zpτ, τ̄q “
ÿ

states

qh´c{24q̄h̄´c̄{24 , q “ e2πiτ , q̄ “ e´2πiτ̄

obeys

Z

ˆ

aτ ` b

cτ ` d
,
aτ̄ ` b

cτ̄ ` d

˙

“ Zpτ, τ̄q, for all

ˆ

a b
c d

˙

P SLp2,Zq .

We specialize to the one-complex-dimensional section τ “ ´τ̄ “ iβ,

Zpτq “ Zpτ,´τq “
ÿ

states

exp
”

´2πβ
´

∆´
c

12

¯ı

, Zpτq “ Zp´1{τq

Angular potential set to zero, discarding spin information.
This includes all rectangular Euclidean tori, for which β is real and positive.

The CFT is not chiral, so Z is not invariant under τ Ñ τ ` 1 and we cannot use standard
results from modular forms.



Simplest bootstrap question:
Given c, what is the largest dimension, ∆gap, of the first primary? Hellerman ’09

Write S-invariance as

0 “
ÿ

primaries

rχ∆pτq ´ χ∆p´1{τqs ”
ÿ

primaries

ΦA∆pτq

where χ∆ is the chiral algebra character. Assuming unique vacuum,

ΦAvacpτq `
ÿ

µ∆ΦA∆pτq “ 0 .

If D linear functional ω such that

ωrΦAvacs ą 0

ωrΦA∆s ě 0 for all ∆ ě ∆˚ ,

then ∆gap ă ∆˚ .
(Inspired by correlator bootstrap à la Rattazzi Rychkov Tonni and Vichi).



Bounds on the Virasoro gap at large c
Hellerman ’09, Fridan Keller ’13, Collier Lin Yin ‘16, Afkhami-Jeddi Hartman Tajdini ‘19

Finding the best bound Virasoro gap ∆V pcq is a linear optimization problem in the
infinite-dimensional space of functionals.

Ansatz : ω “
N
ÿ

n“0

αnB
2n`1
τ |τ“1 , optimize over αn

§ Analytics: N “ 1, ∆V pcq ă
c
6 ` 0.4737 Hellerman

No asymptotic improvement for any fixed finite N Friedan Keller

§ Numerics indicates that true asymptotic bound is stronger (need N Ñ8, then cÑ8).

∆V pcq À
c

9.08 : conjectured asymptotics (from c À 2000 numerics) Afkhami-Jeddi et al.



The optimal (aka extremal) functional in non-negative about ∆gap and has zeros at the actual
spectrum, in particular it vanishes on the vacuum.



Saturation at c “ 4, c “ 12

The numerical bound at c “ 12 is

∆V p12q ď 2` 10´30 .

Zeros of numerical functional converge to non-negative integers, with single roots at
∆ “ 0, 1, 2 and double roots beyond. To high accuracy,

Z12pτq “
1

ηpτq24
ΘΛ24

pτq ´ 24 “ jpτq ´ 744 ,

which is the partition function of the chiral monster CFT with c “ 24, c̄ “ 0.
In the present context, this is a complete surprise!

Similarly, for c “ 4, numerics converge towards ∆V p4q “ 1,
with zeros at nonnegative integers. To high accuracy,

Z4pτq “
1

ηpτq8
ΘΛ8pτq “ pjpτqq

1{3 .



We are going to provide an analytic understanding of the c “ 4 and c “ 12 numerics, and
improve on the asymptotic analytic bound, ∆V pcq À

c
8.503 ,

c
12 = BTZ blackhole threshold

In the process, a surprise: connection with sphere packing problem.



The optimal (aka extremal) functional in non-negative about ∆gap and has zeros at the actual
spectrum, in particular it vanishes on the vacuum.

Till recently, the only analytic construction of the optimal functional known so far was for the
four-point function bootstrap on a line. This will be enough to prove the main results of today.



Optimal Functional for the 1D Correlator Bootstrap
Mazáč, Mazáč Paulos

Consider four identical primaries on a line, xσp0qσpzqσp1qσp8qy. Crossing equation:

ÿ

primaries

f2
σσ∆

”

G
psq
∆ pzq ´G

ptq
∆ pzq

ı

“ 0 ,

with G∆ “ slp2,Rq conformal blocks.

Solution with maximal gap is fermionic mean field theory. Spectrum: 2∆σ ` 1, 2∆σ ` 3, . . .

Theorem: ∆gap “ 2∆σ ` 1, i.e. the OPE of two identical primaries always contains a
non-identity primary with ∆ ă 2∆σ ` 1.

Proof: construct analytically the optimal functional. Natural ansatz:

ωrG
psq
∆ pzq ´G

ptq
∆ pzqs “ sin2

”π

2
p∆´ 2∆σ ´ 1q

ı

ż 1

0

dzQ∆σ pzqG
psq
∆ pzq

Explicit expression for kernel Q∆σ
in terms of hypergeometrics.



Back to the Torus with the Pillow Map

A partition function can be viewed as a 4-point function of twist operators

ZApτq “ p28zp1´ zqqc{12xσp0qσpzqσp1qσp8qyAˆA{Z2

z “

ˆ

θ2pτq

θ3pτq

˙4

S-transformation of torus τ Ø ´1{τ maps to crossing of four points z Ø 1´ z.

With this map, we can just recycle the functionals for the slp2,Rq correlator bootstrap.



Recall that twist operator dimension is ∆σ “ c{8.

Naive conclusion:
If we could ignore the difference between the Virasoro character χV∆pτq and slp2,Rq block of
dimension 2∆, then

∆V pcq “
∆1Dpc{8q

2
“
c` 4

8
.

Too fast, because we need to check action ω on the vacuum.

§ For c P p4, 12q, ω is invalid.

§ For c P p1, 4q Y p12,8q, ω is valid but suboptimal.

§ For c “ 4 and c “ 12, ω is optimal!



Optimal functionals at c “ 4 and c “ 12:

§ ∆V p4q “ 1, spectrum ∆ “ 1, 2, 3, . . . Z4pτq “
1

ηpτq8 ΘΛ8pτq “ pjpτqq
1{3

§ ∆V p12q “ 2, spectrum ∆ “ 2, 3, 4, . . . Z12pτq “
1

ηpτq24 ΘΛ24
pτq ´ 24 “ jpτq ´ 744

Numerics



Sphere packing

What is the densest configuration of identical, non-overlapping spheres in Rd?

Deep problem, with connections to number theory, cryptography, etc.

d “ 2 honeycomb lattice Toth, 1940

d “ 3: Kepler’s conjecture: FCC lattice. Proved by Hales in 1998. Computer-assisted proof.

d “ 8: solved by Viazovska in 2016, E8 lattice.

d “ 24: Leech lattice Cohn Kumar Miller Radchenko Viazovska 2016



A periodic packing is a crystal of spheres, specified by an arbitrary unit cell V , with N spheres
repeated by a lattice Λ.
(A lattice packing is the special case where N “ 1).

The density ρd of a packing in Rd is the filled fraction of the unit cell,

ρd “
NvolpBdq

2d|Λ|
.

For bounding the density, with no loss of generality any packing can be approximated by a
periodic one.



Cohn-Elkies approach

Consider first the special case of an isodual lattice (a lattice congruent to its dual).

For an isodual lattice in Rd, consider the partition function

Zpτq “
ÿ

xPΛ

χx2{2pτq , χx2{2pτq ”
qx

2
{2

ηpτqd

By Poisson summation,

Zpτq “
ÿ

xPΛ

χx2{2pτq “
ÿ

yPΛ˚

χy2{2p´1{τq “ Zp´1{τq .

In this special case, direct connection with the modular bootstrap with Up1q chiral algebra.
Indeed, the Up1qc ˆ Up1qc characters for τ “ ´τ̄ read

χU∆pτq “
q∆

ηpτq2c
,

which coincide characters above if one takes d “ 2c, ∆ “ x2{2.



In this case the linear programming problem has an elegant geometric reformulation.

For a linear functional ω, define

ωrχx2{2pτq ´ χx2{2p´1{τqs ” gpxq .

It is easily seen that g “ ´pg, where ĝ is the Fourier transform of the radial function g in Rd.

Given a Fourier-odd Schwartz function g in Rd with

(i) gp0q “ ´pgp0q “ 0

(ii) gpxq ě 0 for all x ě 2R˚ ,

§ the packing density is bounded by ρd ď volpBdqRd˚;

§ ∆U pcq ď 2R2
˚, where ∆U = gap for spinless Up1qc ˆ Up1qc problem, with d “ 2c.



The Cohn-Elkies approach is much in fact general, applying to any periodic packing.

In the general case, in addition to g, one needs to also construct a Fourier-even radial function
h with suitable positivity properties.

It is observed experimentally and checked in all concrete cases that h adds no new information.

Hence, the connection between the Cohn-Eilkies approach to sphere packing and modular
bootstrap is completely general.



Cohn-Elkies numerics



Numerical bounds left no real doubt that the E8 and Leech lattice are the optimal packings in
8 and 24 dimensions.

Theorem [Viazovska 2016]: E8 is optimal.

Proof: Found the extremal functional (“magic function”) analytically.

A clever ansatz for g (and h) turns this into a problem of finding quasi-modular forms with
certain properties,

gpxq “ sin2
pπx2{2q

ż i8

0

dτ eiπτx
2

rmodular objects



The punchline should be clear.

Viazovska’s magic functions coincide with Mazáč’s analytic functionals for d “ 8 and d “ 24.

One just needs to use the pillow map and apply Mazáč’s functionals on the Up1q characters.



Upper bounds from linear programming on the gap for Up1qc (” sphere packing) and Virc.
c`4

8 is the optimal bound in the case of the four-point function bootstrap in 1D.



Summary: asymptotic bounds for spinless modular bootstrap

For c ą 12, our functional proves the upper bound

∆V pcq ă
c` 4

8
.

With some more work, we find an improved (but still sub-optimal) functional that vanishes on
the vacuum for large c, leading the asymptotic bounds

∆V pcq À
c

8.503
.

Better than Hellerman’s bound c{6 but weaker than conjectured asymptotics ∆V „ c{9.08.



Numerical functionals for the spinless modular bootstrap appear to approach our analytic
functionals for fixed c and large ∆, with zeros at ∆k «

c´4
8 ` k.

This does not look like the spectrum expected for “pure gravity”, which should be
non-degenerate and chaotic, with tiny spacing dictated by Cardy formula.

Possible resolutions:

§ Zextremalpq, q̄q for the full modular bootstrap will exhibit expected chaotic behavior
(and perhaps the „ c{12 gap suggested by BTZ).
Numerics not encouraging, but convergence may be slow.

§ More constraints (such as crossing constraints) needed to reach the edge of theory space.

§ “Pure gravity” is not a thing. (As we have defined it)

§ ¨ ¨ ¨



Outlook: Modular Bootstrap and Sphere Packing

§ Spinless modular bootstrap ðñ linear programming bounds on sphere packing.
Both are just necessary conditions for their respective problem.
Is there a deeper connection?
Further relations between additional constraints on both sides?

§ Of great interest to find the best asymptotic bounds for both ∆U and ∆V .

∆V constraints the spectrum of black holes in 3D gravity.

∆U constraints the most efficient classical error-correcting codes.

Black holes are known to saturate many bounds on entropy, chaos, complexity, ...
Yet another sense in which they live at the edge.



Outlook: Bootstrap and Swampland

Many questions for the future.
We now have the tools, e.g. new analytic functionals for the correlator bootstrap.
Mazáč LR Zhou, Carmi Caron-Hout, Paulos, Sleight Taronna

Swampland questions for AdS quantum gravity Ñ precise questions for the bootstrap

Recent claim by Penedones, Silva, Zhiboedov:
AdSd`1 Einstein gravity + one minimally coupled scalar admits no UV completion,

if the scalar mass is such that dual operator dimension ∆ P

´

d´2
2 , 3pd´2qq

4

¯

Constraints on N “ 1 AdS4 vacua with large gap?

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨



Warm-up problem:
Show that N “ 8 AdS5 gauge supergravity does not have a UV completion.

Numerical bootstrap bounds saturated by AdS5 sugra up to order Op1{cq.

At order Op1{c2q, KK modes contribute a (negative) anomalous dimension

Analytic (or even numerical) control at Op1{c2q might rule out pure AdS5

Mazáč, Perlmutter, LR, in progress


