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When the Gorilla give thumbs up, and 

you look under Cup Number 1, you 

always find the ball.
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What if the Gorilla gives thumbs up, 

and you look under Cup Number 2?
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(Quantum) Shell Game

Secret of the Quantum Gorilla:

Before deciding whether to give 

thumbs up, he checks the cups 

collectively, rather than one at a time.



(Quantum) Shell Game

Before deciding whether to give thumbs up, the gorilla

checks the cups collectively, rather than one at a time.
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Three coins on the table. Each is either heads or tails. You can uncover 

any one of the three coins, revealing whether it is heads of tails, but when 

you do the other two coins disappear --- you’ll never know whether those 

other two coins are heads or tails.
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There are many sets of coins, identically prepared by Donald.

For each of the three coins, in Pasadena or Santa Barbara, the probability 

is ½ that the coin is heads or tails. 
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Bob reasons:

-- We know the correlation is always perfect,

-- And surely what Alice does in Pasadena exerts no influence on what 

Bob finds when he uncovers a coin in Santa Barbara.

-- So, in effect, Alice and Bob, working together, can learn the outcome 

when any two of the coins are uncovered in Santa Barbara.
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Why? Because if you uncover all three coins, at least two have to be the same!
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Alice and Bob did the experiment a million times, and found …

same same same
1
4
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How could Bell’s prediction be wrong? Bell assumed the probability distribution 

describes our ignorance about the actually state of the coins under the black 

covers, and that there is no “action at a distance” between Pasadena and Santa 

Barbara. The lesson:

-- Don’t reason about “counterfactuals” (“I found H when I uncovered 1; I would 

have found either H or T if I had uncovered 2 instead, I just don’t know which.”) 

When the measurements are incompatible, then if we do measurement 1 we can’t 

speak about what would have happened if we had done measurement 2 instead. 

-- Quantum randomness is not due to ignorance. Rather, it is intrinsic, occurring 

even when we have the most complete knowledge that Nature will allow. 

-- Note that the quantum correlations do not allow A and B to send signals to one 

another.
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However, Alice and Bob did the experiment a million times, and found …

same same same
1
4

(1,2) (2,3) (1,3)P P P  

Bell inequality violations are seen in experiments with qubits encoded in photons, 

atoms, and superconducting circuits.

There are “loopholes”:

1. Detection efficiency

2. Causality

3. “Free will”

Bell inequality violation has been verified experimentally since the 1980s, but the 

first “loophole free” experiments were first achieved in 2015.

Alice and Bob shared a maximally entangled (Bell) pair of qubits, and each could 

perform a two-outcome measurement on her/his qubit in one of three possible 

ways. What did they measure? 
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A complete description of a typical quantum state of just 300 qubits 
requires more bits than the number of atoms in the visible universe. 



Classical systems cannot simulate 
quantum systems efficiently (a widely 

believed but unproven conjecture).

Arguably the most interesting thing we know about 
the difference between quantum and classical.
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“The theory of everything?”

“The Theory of Everything is not even remotely a theory of 

every thing … We know this equation is correct because it 

has been solved accurately for small numbers of particles 

(isolated atoms and small molecules) and found to agree in 

minute detail with experiment. However, it cannot be solved 

accurately when the number of particles exceeds about 10. 

No computer existing, or that will ever exist, can break this 

barrier because it is a catastrophe of dimension … We have 

succeeded in reducing all of ordinary physical behavior to a 

simple, correct Theory of Everything only to discover that it 

has revealed exactly nothing about many things of great 

importance.”

R. B. Laughlin and D. Pines, PNAS 2000.



“Nature isn’t classical, dammit, and if you want to make a simulation of 

Nature, you’d better make it quantum mechanical, and by golly it’s a 

wonderful problem because it doesn’t look so easy.”

R. P. Feynman, 1981



A quantum computer can simulate efficiently any 

physical process that occurs in Nature.

(Maybe. We don’t actually know for sure.)

particle collision entangled electronsmolecular chemistry

black hole early universesuperconductor



Why quantum computing is hard

We want qubits to interact strongly 
with one another.

We don’t want qubits to interact with 
the environment.

Except when we control or measure 
them. 



The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a 
quantum processor than on a classical processor. A fundamental challenge is to build a high-fidelity processor 
capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a
processor with programmable superconducting qubits to create quantum states on 53 qubits, corresponding to a 
computational state-space of dimension 253 (about 1016). Measurements from repeated experiments sample the 
resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes
about 200 seconds to sample one instance of a quantum circuit a million times—our benchmarks currently indicate 
that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This 
dramatic increase in speed compared to all known classical algorithms is an experimental realization of
quantum supremacy for this specific computational task, heralding a much anticipated computing paradigm.

Nature 574, pages 505–510 (2019), 23 October 2019

https://www.nature.com/nature


Each qubit is also connected to its neighboring qubits using a new adjustable 
coupler [31, 32]. Our coupler design allows us to quickly tune the qubit-qubit 
coupling from completely off to 40 MHz. Since one qubit did not function properly 
the device uses 53 qubits and 86 couplers.

[31] Martinis group, UCSB, 2014 (inductor coupled).
[32] Oliver group, MIT Lincoln Laboratory, 2018 (capacitor coupled)



About Sycamore
Greg Kuperberg: “Quantum David vs. Classical Goliath”

A fully programmable circuit-based quantum computer. n= 53 working qubits in a 
2D array with coupling of nearest neighbors.

Entangling 2-qubit gates with error rate .6% (in parallel), executed in 12 ns.

Estimated global circuit fidelity F = .2% for circuit with 20 “cycles” of 2-qubit 
gates: 430 2-qubit gates and 1113 1-qubit gates.

A circuit with fixed 2-qubit gates and randomly-chosen 1-qubit gates is chosen 
and executed millions of  times; Each time, all qubits are measured, generating a 
53-bit string.

The collected sample of 53-bit strings is not uniformly distributed. Comparing 
with classical simulations one can verify “heavy output generation” --- that the 
average probability of strings in the sample is greater than 2-n. 

Because a random circuit has no structure, and the Hilbert space is exponentially 
large in n, simulation using a classical supercomputer is hard. (At least days, while 
the Sycamore generates a large sample in minutes.)

Experiment verifies that the hardware is working well enough to produce 
meaningful results in a regime where classical simulation is very difficult.



What quantum computational supremacy means
“Quantum David vs. Classical Goliath”

It’s a programmable circuit-based quantum computer. 

An impressive achievement in experimental physics and a testament to ongoing 
progress in building quantum computing hardware; 

We have arguably entered the regime where the extravagant exponential 
resources of the quantum world can be validated.

This confirmation does not surprise (most) physicists, but it’s a milestone for 
technology on planet earth. 

Building a quantum computer is merely really, really hard, not ridiculously hard.
The hardware is working; we can begin a serious search for useful applications.

Other takes:
John Martinis and Sergio Boixo on Google QI Blog, 23 October 2019.
Scott Aaronson’s “Quantum Supremacy FAQ” on Shtetl Optimized.
Scott’s New York Times Op-Ed, 30 October 2019. 
My column in Quanta Magazine, 2 October 2019.



Quantum computing in the NISQ Era

The (noisy) 50-100 qubit quantum computer has arrived.
(NISQ = noisy intermediate-scale quantum.)

NISQ devices cannot be simulated by brute force using the most 
powerful currently existing supercomputers. 

Noise limits the computational power of NISQ-era technology.

NISQ will be an interesting tool for exploring physics. It might also 
have other useful applications. But we’re not sure about that.

NISQ will not change the world by itself. Rather it is a step toward 
more powerful quantum technologies of the future. 

Potentially transformative scalable quantum computers may still be 
decades away. We’re not sure how long it will take.

Quantum 2, 79 (2018), arXiv:1801.00862



Department of unlikely headlines (Gizmodo 22 Nov. 2019)

















From: Robbert Dijkgraaf at the inauguration of Caltech’s Burke Institute.
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