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Mbotivation: quantum black holes

e Quantum fields in classical space (Hawking): 7T = 21, SIES
T

e Information scrambling: 7y, ~ (277) 'In S
— Gravitational interaction between incoming
and outgoing radiation
— Dray-t"Hooft shock waves
— OTOCs: (W (t)Y(0)Z(t) X(0))

e Evolution over Page’s time, when half of the black hole
evaporates )

— Full quantum gravity PS



Assumptions

e Thermal state is replaced with the maximally mixed state on a
“typical subspace” L:

1
p=2"te H/IT p:EE, d:dim[,:)ZXZS

e Late-time OTOCs (= almost perfect scrambling):

(W(1)Y (0) Z(t) X(0))
~ (WZ)Y)(X) + (WHZ)YX) — (W){(Z)(V){X)

where W(t)=UWU, Z({t)=UZU, Y(0)=Y, X(0)=X

— Holds for a Haar-random unitary U

— Broadly applicable if X, Y, Z, W act on small subsystems



The Hayden-Preskill problem

Basic version
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Tensor diagrams

e Nodes are tensors; lines are index contractions.
e Time goes up.

— Vertical sections of lines are associated with Hilbert spaces. If
a line goes up and then down, the Hilbert space changes to the
dual space.

— Let ¢ € A be a vector with elements ¢; and ¢* € A’ a vector
with elements ¢}. Then

w=L, =1, @=T" wI-T"

T - . A A A A
— X' is X upside-down: .
M _ = 5, Xl B



When is the decoding possible?

R C D B’

State of the world:  |W) = U p=U)(Y|

1£)

e Black hole has “forgotten” Alice’s secret < pre =~ pr ® pc

e Quantitative condition: Let
§=drdcTrppe—1 (6> 0).

If § < 1, then Alice’s secret can, in principle, be recovered from
the Hawking radiation D and the purifying subsystem B’. In our
algorithms (and in the original Hayden-Preskill work), ¢ determines
the decoding fidelity.



Calculation of 1+ § = dpdc Tr ,5%30
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Expression for the fidelity parameter o
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(Generalizes the result of P. Hosur, X.-L. Qi, D. Roberts, B. Yoshida, arXiv:1511.04021)
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The late-time case

Assumption:

Used in calculations: (Y)(X) = E/a CJE (YX) = @

1 1 1 dadr
~ ———— = S=dudgA—1< 28
dadr &2 dadpd? ATH &,

Result: A




How hard is the decoding?

e The complexity is at least linear in dg (i.e.
exponential in the message size). Indeed, let
ds = dgr and consider the classical case:

(c,r) = u(a,b)

discarded known to Bob
Thus, r = f(a), where f is random. The

only general way to reconstruct a from r is
exhaustive search.

e We show that the complexity is O(dadgrC),
where C is the size of the circuit for U.
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Probabilistic decoder
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Classically, it’s just random

guessing. The Hawking radiation
is r = f(a); Bob picks a random
a’, computes ' = f(a'), and
compares it with 7.
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succeeds with probability

(Uin(Tre @ Pp)Vin) = A > (dadg)™?



Fidelity of probabilistic decoding
Projected state:

R C D D ¢ R
LI
[Wous) = —=(Inc @ Pp)|Wy) = L T
out _\/Z RC D in ﬁ U U
L1
Fidelity:
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Deterministic decoder

e Uses Grover search to turn |W;,) to |V,,) without projection
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Very roughly,
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More accurate description of the algorithm

1) Apply U* to produce

2) Let
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3) Apply WaWp repeatedly o
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times, where 6, = 2arcsin((dadr)~"/?).



Analysis of the algorithm

o Let PaPpPa=T=> ojlv)(Wsl,  |Ww) = /5 nidre ® [¥;)
=T

eigenvalue decomposition, a;; > 0

Then each vector |U;) evolves under /pc® (WAWp)™ in a two-dimensional
subspace with basis vectors |®;), [7).

¥(m) =3 VB (sin((m + 1)8;) 195) + cos((m + 1)6;) |27))

where 0; = 2arcsin /o

e We show that r < drde, Zaj = 2—07 Za? = Z_CA‘
, A A
7j=1

J=1

If § = dadgA — 1 =0 (ideal case), then a; = (dadg)~'/? for all j.



Analysis of the algorithm (cont.)

o Let § = dadgA—1, m, =7/(20,), where 6, = 2arcsin((dadr)"/?).
Then (m* + %)Qj ~ T,

|W(my)) ~ Z VPi|®;) = |¥ou); the Euclidean distance is O(\/(_S)
j=1

e Conclusions:

— The algorithm involves O(\/d AdR) applications of U* and U7
— The fidelity of the reconstructed state |¥(m.)) is O(4). Recall
that in the case of almost perfect scrambling,
drd

0 <
dp




Open questions

1. How to generalize the algorithm to thermal density matrices? We
can do it under these unrealistic assumptions:

paB =pa®pp,  pop=pc®pp,  pcp=UpapU".

2. In the traversible wormhole story, (Gao, Jafferis, Wall 2016; Malda-
cena, Stanford, Yang 2017), the decoding happens in one go. What
are the necessary/sufficient conditions in terms of OTOCs?

3. The Grover iterations bear some similarity with multiple shocks
(Shenker, Stanford 2014). What is the exact relation?



