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Classical and quantum phase transitions

classical phase transitions: at non-zero temperature, asymptotic critical
behavior dominated by classical physics (thermal fluctuations)

guantum phase transitions: at zero temperature as function of pressure,

magnetic field, chemical composition, ..., driven by quantum fluctuations
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phase diagrams of LiHoF, (Bitko et al. 96) and MnSi (Pfleiderer et al. 97)



Imaginary time and quantum to classical mapping

Classical partition function: statics and dynamics decouple
Z — fdpdq e_BH(p,CI) — fdp e_BT(p) qu e_/BU(Q) ~J qu e_BU(Q)

Quantum partition function:
7 = Tre PH = limp_,o0 (e PT/Ne=BU/NYN = [ Dlg(r)] Sla(™)

imaginary time 7 acts as additional dimension

at 17" = 0, the extension in this direction becomes infinite

Caveats:

e mapping holds for thermodynamics only

e resulting classical system can be unusual and anisotropic (z # 1)

e extra complications with no classical counterpart may arise, e.g., Berry phases
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Weak disorder and Harris criterion

weak disorder: impurities lead to spatial variation of coupling strength g(x)
Theory: random mass disorder Experiment: “good disorder” 777

Harris criterion: variation of average local g.(z) in correlation volume must be
smaller than distance from global g.

(9c(1)) (9:(2))
variation of average g. in volume £&¢

Alge(z)) ~ §2 ¢

distance from global critical point ¢ ~ £-1/¥ (93 [(9c(4)

Age(a)) <t =

e if clean critical point fulfills Harris criterion = stable against disorder
e inhomogeneities vanish at large length scales

e macroscopic observables are self-averaging

e example: 3D classical Heisenberg magnet: v = 0.698



Finite-disorder critical points

if critical point violates Harris criterion = unstable against disorder

Common lore:

e system goes to new different critical point which fulfills dv > 2

e inhomogeneities remain finite at all length scales (" finite disorder”)

e macroscopic observables are not self-averaging

e example: 3D classical Ising magnet: clean v = 0.627 = dirty v = 0.684
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Disorder and quantum phase transitions
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Disorder is quenched: I I
e impurities are time-independent ommmm o ® °
e disorder is perfectly correlated in imaginary I I
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Disorder generically has stronger effects on quantum phase transitions

than on classical transitions




Random quantum Ising model

H = — Z JZ'jO',;-ZO'; — ZhZO';:E
(4,5) ¢

nearest neighbor interactions J;; and transverse fields h; both random

Exact solution in 141 dimensions:
Ma-Dasgupta-Hu-Fisher real space renormalization group

e in each step, integrate out largest energy among all J;; and h;
e cluster aggregation/annihilation procedure
e becomes exact in the limit of large disorder

Infinite-disorder critical point:

e under renormalization the disorder increases without limit
e relative width of the distributions of J;;, h; diverges



Infinite-disorder critical point

e extremely slow dynamics log&, ~ &

(activated scaling)

e distributions of macroscopic observables become infinitely broad
e average and typical values can be drastically different
Gap ~ 1"

e averages are dominated by rare events

correlations: —log Gyyp ~ 1Y
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Griffiths effects in a classical dilute ferromagnet

e critical temperature 1. is reduced N R N N R 2R R
compared to clean value T, | td ttil tl tt
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no global order but local order on rare ittt P otttttdditt
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rare regions have slow dynamics
= singular free energy everywhere in the Griffiths region (T, < T < T,)

Classical Griffiths effects are generically weak and essentially unobservable

contribution to susceptibility: XRR ~ | dL e~ LTV = finite
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Quantum Griffiths effects

rare regions at a QPT are finite in
space but infinite in imaginary time

fluctuations of the rare regions are
even slower than in classical case = /

T
Griffiths singularities are enhanced

rare region at a quantum phase
transition

Random quantum lIsing systems

Qe : d
local susceptibility (inverse energy gap) of rare region: Y, ~ A™! ~ oL

XeR ~ [ dL e—cLleal”  cap diverge inside Griffiths region

finite temperatures:
/ . . .
xR ~ T4* 1 (2’ is continuously varying exponent)
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Rare regions at quantum phase transitions with overdamped
dynamics

itinerant Ising quantum antiferromagnet

magnetic fluctuations are damped due to coupling to electrons
I'(q,w,) =t + q2 + [wn|

in imaginary time: long-range power-law interaction ~ 1/(7 — 7/)?
1D lIsing model with 1/r? interaction is known to have an ordered phase

= isolated rare region can develop a static magnetization, i.e.,
large islands do not tunnel (c.f. Millis, Morr, Schmalian and Castro-Neto)

= conventional quantum Griffiths behavior does not exist
magnetization develops gradually on independent rare regions

guantum phase transition is smeared by disorder




Phase diagram at a smeared transition
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possible realization: ferromagnetic quantum phase transition in Ni,Pd;_,



Universality of the smearing scenario

Condition for disorder-induced smearing:

isolated rare region can develop a static order parameter
= rare region has to be above lower critical dimension

Examples:

e quantum phase transitions of itinerant electrons
(disorder correlations in imaginary time -+ long-range interaction 1/72)

e classical Ising magnets with planar defects
(disorder correlations in 2 dimensions)

e classical non-equilibrium phase transitions in the directed percolation
universality class with extended defects
(disorder correlations in at least one dimension)

Disorder-induced smearing of a phase transition is a

ubiquitous phenomenon




Isolated islands — Lifshitz tail arguments

probability to find rare region of size L devoid of defects: w ~ e—cL

region has transition at distance ¢.(L) < 0 from the clean critical point
finite size scaling: |t.(L)| ~ L% (¢ = clean shift exponent)

Consequently:
probability to find a region which becomes critical at ¢.:

w(tC) ~ eXp(—B |t6|_d/¢)

total magnetization at coupling ¢ is given by the sum over all rare regions having
te > t:
m(t) ~exp(=B [t|~¥?)  (t —0-)



Computer simulation of a model system

Classical Ising model in 241 dimensions

1 Z 1 Z
H - _Z’T < > /SX7TSy77-/ o E’T / JXSXﬂ-SXaT/
X,y), 7, T

X, T,T

Jx: binary random variable, P(J) = (1 —¢) 6(J —1) 4+ ¢ 6(J)
totally correlated in the time-like direction

e short-range interactions in the two space-like directions

e infinite-range interaction in the time-like direction
(static magnetization on the rare regions is retained, but time direction
can be treated exactly, permitting large sizes)



Smeared transition in the infinite-range model
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T = 4.88

phase transition is smeared
(m and x are independent of L)

Lifshitz magnetization tail
towards disordered phase

log(m) ~ —1/(Teo—T)



Local magnetization distribution
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Local magnetization in the
tail region (T = 4.8875)

global magnetization starts
to form on isolated islands

very inhomogeneous system

Distribution of the local
magnetization values

very broad, even on
logarithmic scale

In(myyp) ~ (m)=*/2
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Classification of dirty phase transitions according to
importance of rare regions

Dimensionality  Griffiths effects  Dirty critical point Examples

of rare regions (classical PT, QPT)

drr < d_ weak exponential  conv. finite disorder class. magnet with point defects
dilute bilayer Heisenberg model

drr = d_ strong power-law infinite randomness Ising model with linear defects
random quantum Ising model

itin. quantum Heisenberg magnet?

drr > d_ RR become static smeared transition Ising model with planar defects
itinerant quantum lIsing magnet



Dimer-diluted 2d Heisenberg quantum antiferromagnet

H = ‘]H Z eiejSi,a . Sj,a + JJ_ Z eiSi,l ’ Sz’,27
(ig) v

Large scale Monte-Carlo simulations:

conventional finite-disorder critical point with power-law scaling
critical exponents are universal, dynamical exponent z = 1.31
(after accounting for corrections to scaling)
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Conclusions

e even weak disorder can have surprisingly strong effects on a quantum phase
transition

e rare regions play a much bigger role quantum phase transitions than a
classical transitions

e effective dimensionality of rare regions determines overall phenomenology
of phase transitions in disordered systems

e Ising systems with overdamped dynamics: sharp phase transition is destroyed
by smearing because static order forms on rare spatial regions

e at a smeared transition, system is extremely inhomogeneous, even on a
logarithmic scale

Griffiths effects at quantum phase transitions leads to a rich variety of

new and exotic phenomena



