
Quantum phase transitions and disorder:
Rare regions, Griffiths effects, and smearing

Thomas Vojta
Department of Physics, University of Missouri-Rolla

• Phase transitions and quantum phase transitions
• Quenched disorder and critical behavior: the common lore

• Rare regions and Griffiths effects
• Smeared phase transitions

• An attempt of a classification

Santa Barbara, Jan 18, 2005



Acknowledgements

at UMR

Rastko Sknepnek
Mark Dickison
Bernard Fendler

collaboration

Jörg Schmalian
Matthias Vojta

Funding:

University of Missouri Research Board
National Science Foundation CAREER Award



Classical and quantum phase transitions

classical phase transitions: at non-zero temperature, asymptotic critical
behavior dominated by classical physics (thermal fluctuations)

quantum phase transitions: at zero temperature as function of pressure,
magnetic field, chemical composition, ..., driven by quantum fluctuations
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phase diagrams of LiHoF4 (Bitko et al. 96) and MnSi (Pfleiderer et al. 97)



Imaginary time and quantum to classical mapping

Classical partition function: statics and dynamics decouple

Z =
∫

dpdq e−βH(p,q) =
∫

dp e−βT (p)
∫

dq e−βU(q) ∼ ∫
dq e−βU(q)

Quantum partition function:

Z = Tre−βĤ = limN→∞(e−βT̂/Ne−βÛ/N)N =
∫

D[q(τ)] eS[q(τ)]

imaginary time τ acts as additional dimension
at T = 0, the extension in this direction becomes infinite

Caveats:
• mapping holds for thermodynamics only
• resulting classical system can be unusual and anisotropic (z 6= 1)
• extra complications with no classical counterpart may arise, e.g., Berry phases
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Weak disorder and Harris criterion

weak disorder: impurities lead to spatial variation of coupling strength g(x)
Theory: random mass disorder Experiment: “good disorder” ???

Harris criterion: variation of average local gc(x) in correlation volume must be
smaller than distance from global gc

variation of average gc in volume ξd

∆〈gc(x)〉 ∼ ξ−d/2

distance from global critical point t ∼ ξ−1/ν

∆〈gc(x)〉 < t ⇒ dν > 2

ξ

+gC(1),

+gC(4),

+gC(2),

+gC(3),

• if clean critical point fulfills Harris criterion ⇒ stable against disorder
• inhomogeneities vanish at large length scales
• macroscopic observables are self-averaging
• example: 3D classical Heisenberg magnet: ν = 0.698



Finite-disorder critical points

if critical point violates Harris criterion ⇒ unstable against disorder

Common lore:

• system goes to new different critical point which fulfills dν > 2
• inhomogeneities remain finite at all length scales (”finite disorder”)
• macroscopic observables are not self-averaging
• example: 3D classical Ising magnet: clean ν = 0.627 ⇒ dirty ν = 0.684

Distribution of critical
susceptibilities of 3D dilute Ising
model
(Wiseman + Domany 98)
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Disorder and quantum phase transitions

Disorder is quenched:

• impurities are time-independent

• disorder is perfectly correlated in imaginary
time direction

⇒ correlations increase the effects of disorder
(”it is harder to average out fluctuations”)

x

τ

Disorder generically has stronger effects on quantum phase transitions
than on classical transitions



Random quantum Ising model

H = −
∑

〈i,j〉
Jijσ

z
i σ

z
j −

∑

i

hiσ
x
i

nearest neighbor interactions Jij and transverse fields hi both random

Exact solution in 1+1 dimensions:
Ma-Dasgupta-Hu-Fisher real space renormalization group

• in each step, integrate out largest energy among all Jij and hi

• cluster aggregation/annihilation procedure
• becomes exact in the limit of large disorder

Infinite-disorder critical point:

• under renormalization the disorder increases without limit
• relative width of the distributions of Jij, hi diverges



Infinite-disorder critical point

• extremely slow dynamics log ξτ ∼ ξµ (activated scaling)
• distributions of macroscopic observables become infinitely broad
• average and typical values can be drastically different

correlations: − log Gtyp ∼ rψ Gav ∼ r−η

• averages are dominated by rare events

Probability distribution

of the end-to-end

correlations in a random

quantum Ising chain

(Fisher + Young 98)
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Griffiths effects in a classical dilute ferromagnet

• critical temperature Tc is reduced
compared to clean value Tc0

• for Tc < T < Tc0:
no global order but local order on rare
regions devoid of impurities

• probability: w(L) ∼ e−cLd
:

rare regions have slow dynamics
⇒ singular free energy everywhere in the Griffiths region (Tc < T < Tc0)

Classical Griffiths effects are generically weak and essentially unobservable

contribution to susceptibility: χRR ∼
∫

dL e−cLd
Lγ/ν = finite



Quantum Griffiths effects

rare regions at a QPT are finite in
space but infinite in imaginary time

fluctuations of the rare regions are
even slower than in classical case ⇒
Griffiths singularities are enhanced

t

rare region at a quantum phase

transition

Random quantum Ising systems

local susceptibility (inverse energy gap) of rare region: χloc ∼ ∆−1 ∼ eaLd

χRR ∼
∫

dL e−cLd
eaLd

can diverge inside Griffiths region

finite temperatures:
χRR ∼ T d/z′−1 (z′ is continuously varying exponent)
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Rare regions at quantum phase transitions with overdamped
dynamics

itinerant Ising quantum antiferromagnet

magnetic fluctuations are damped due to coupling to electrons

Γ(q, ωn) = t + q2 + |ωn|

in imaginary time: long-range power-law interaction ∼ 1/(τ − τ ′)2

1D Ising model with 1/r2 interaction is known to have an ordered phase

⇒ isolated rare region can develop a static magnetization, i.e.,
large islands do not tunnel (c.f. Millis, Morr, Schmalian and Castro-Neto)

⇒ conventional quantum Griffiths behavior does not exist
magnetization develops gradually on independent rare regions

quantum phase transition is smeared by disorder



Phase diagram at a smeared transition
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possible realization: ferromagnetic quantum phase transition in NixPd1−x



Universality of the smearing scenario

Condition for disorder-induced smearing:

isolated rare region can develop a static order parameter
⇒ rare region has to be above lower critical dimension

Examples:

• quantum phase transitions of itinerant electrons
(disorder correlations in imaginary time + long-range interaction 1/τ2)

• classical Ising magnets with planar defects
(disorder correlations in 2 dimensions)

• classical non-equilibrium phase transitions in the directed percolation
universality class with extended defects
(disorder correlations in at least one dimension)

Disorder-induced smearing of a phase transition is a
ubiquitous phenomenon



Isolated islands – Lifshitz tail arguments

probability to find rare region of size L devoid of defects: w ∼ e−cLd

region has transition at distance tc(L) < 0 from the clean critical point
finite size scaling: |tc(L)| ∼ L−φ (φ = clean shift exponent)

Consequently:
probability to find a region which becomes critical at tc:

w(tc) ∼ exp(−B |tc|−d/φ)

total magnetization at coupling t is given by the sum over all rare regions having
tc > t:

m(t) ∼ exp(−B |t|−d/φ) (t → 0−)



Computer simulation of a model system

Classical Ising model in 2+1 dimensions

H = −1
Lτ

∑

〈x,y〉,τ,τ ′
Sx,τSy,τ ′ −

1
Lτ

∑

x,τ,τ ′
JxSx,τSx,τ ′

Jx: binary random variable, P (J) = (1− c) δ(J − 1) + c δ(J)
totally correlated in the time-like direction

• short-range interactions in the two space-like directions
• infinite-range interaction in the time-like direction

(static magnetization on the rare regions is retained, but time direction
can be treated exactly, permitting large sizes)



Smeared transition in the infinite-range model
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Local magnetization distribution
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Classification of dirty phase transitions according to
importance of rare regions

Dimensionality Griffiths effects Dirty critical point Examples
of rare regions (classical PT, QPT)

dRR < d−c weak exponential conv. finite disorder class. magnet with point defects

dilute bilayer Heisenberg model

dRR = d−c strong power-law infinite randomness Ising model with linear defects

random quantum Ising model

itin. quantum Heisenberg magnet?

dRR > d−c RR become static smeared transition Ising model with planar defects

itinerant quantum Ising magnet



Dimer-diluted 2d Heisenberg quantum antiferromagnet

H = J‖
∑
〈i,j〉

a=1,2

εiεjŜi,a · Ŝj,a + J⊥
∑

i

εiŜi,1 · Ŝi,2,

Large scale Monte-Carlo simulations:

conventional finite-disorder critical point with power-law scaling
critical exponents are universal, dynamical exponent z = 1.31
(after accounting for corrections to scaling)
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Conclusions

• even weak disorder can have surprisingly strong effects on a quantum phase
transition

• rare regions play a much bigger role quantum phase transitions than a
classical transitions

• effective dimensionality of rare regions determines overall phenomenology
of phase transitions in disordered systems

• Ising systems with overdamped dynamics: sharp phase transition is destroyed
by smearing because static order forms on rare spatial regions

• at a smeared transition, system is extremely inhomogeneous, even on a
logarithmic scale

Griffiths effects at quantum phase transitions leads to a rich variety of
new and exotic phenomena


