Symmetry protected topological phase for interacting bosons with Rydberg atoms

Hans Peter Büchler

Institute for theoretical physics III, and Center for Integrated Quantum Science and Technology

Universität Stuttgart, Germany

Experimental collaboration:

S. de Léséleuc, V. Lienhard, P. Scholl, D. Barredo, T. Lahaye, and A. Browaeys

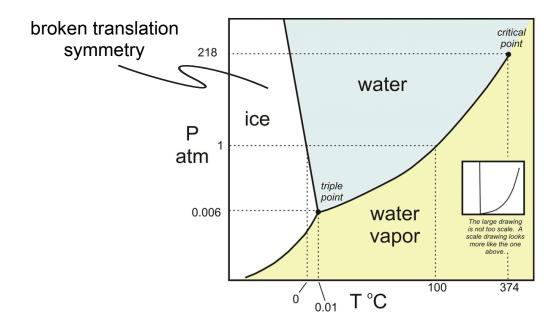
Research group:

Jan Kumlin, **Nicolai Lang**, Tobias Ilg, Kevin Kleinbeck, **Sebastian Weber**

Strongly interacting Rydberg slow light polaritons

From few to many-body physics with dipolar quantum gases

How to characterize states of matter?

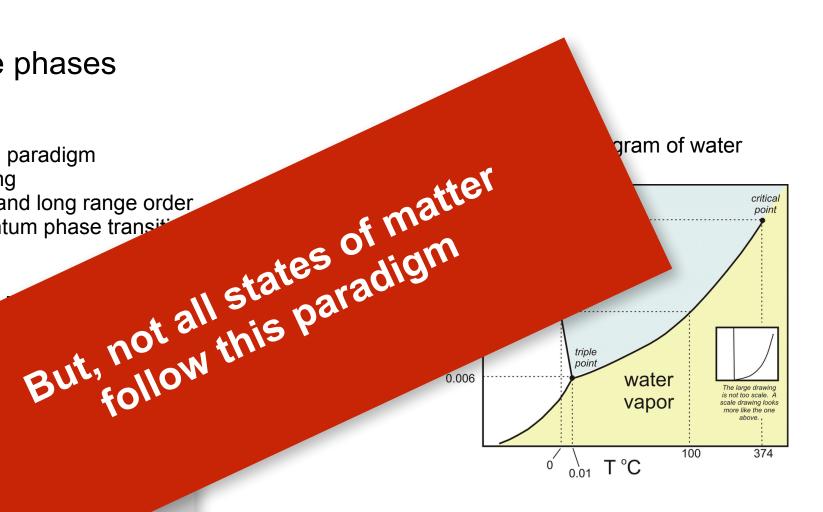

Characterize phases of matter

- based on Landau paradigm
- symmetry breaking
- order parameter and long range order
- thermal and quantum phase transitions

Extremely successful

- band insulator/Fermi liquids
- crystals
- superfluids
 - Bose-Einstein condensate
 - superfluid Helium
- superconductors
- ferromagnets and anti-ferromagnets

phase diagram of water


How to characterize states of matter?

Characterize phases of matter

- based on Landau paradigm
- symmetry breaking
- order parameter and long range order
- thermal and quantum phase transiti

Extremely su

- band
- crystal
- superfluid
 - Bose-Eir
 - superfluid
- superconduct
- ferromagnets and anti-ferromagnets

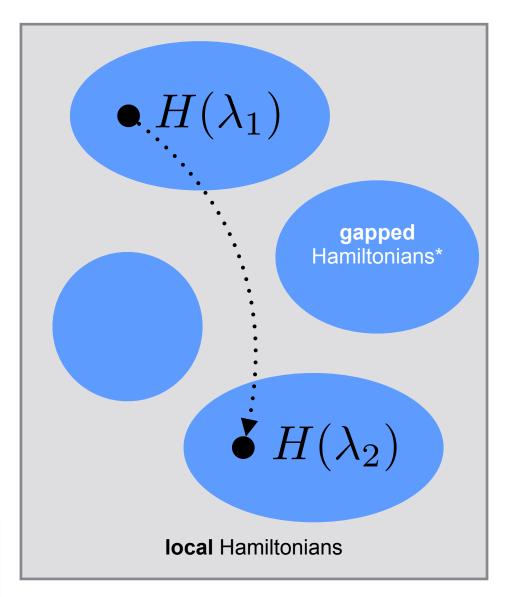
Topological phases

Characterizing ground states of quantum many-body systems at T=0

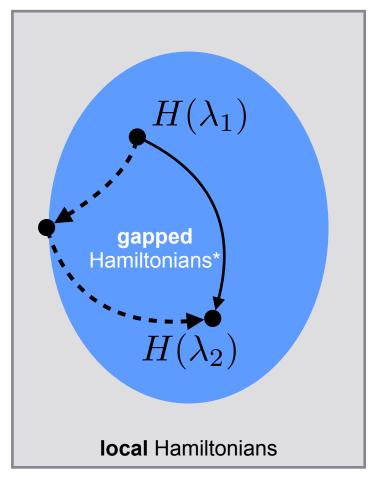
- absence of symmetry breaking
- gapped phases

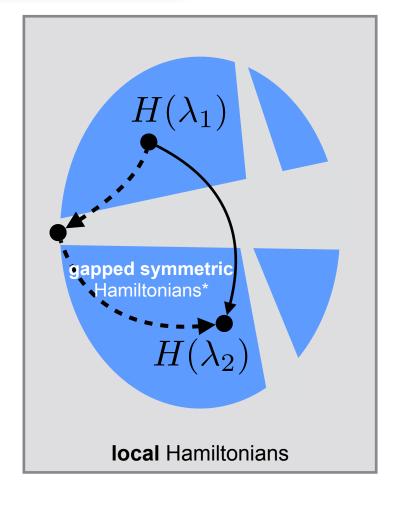
Definition:

two states are in the same topological phase if they can be smoothly transformed into each other without closing the gap


Example in 2D:

integer quantum Hall states, fractional quantum Hall states, toric code,




Are there other topological phases also in 1D?

Two dimensions

- restrict to systems, which satisfy a certain symmetry
- symmetry group $\mathcal S$ with $[H,\mathcal S]=0$

One dimension

Topological insulators: fermionic SSH model

- non-interacting Fermions
- Hamiltonian

$$H = -J \sum_{i \in \text{even}} c_{i+1}^{\dagger} c_i - J' \sum_{i \in \text{odd}} c_{i+1}^{\dagger} c_i + h.c.$$
$$= \sum_{i,j} c_i^{\dagger} \hat{H}_{ij} c$$

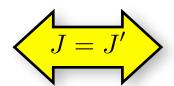
- gapped ground state at half-filling
- 10-fold way classifications of topological insulators
 (Chiu, et al., RMP 2016; Ludwig, 2016)

AIII, Z-index - sub-lattice (chiral) symmetry
(anti-unitary operator)

— 「
complex
conjugation

$$S_S = \prod_i \left[c_i + (-1)^i c_i^{\dagger} \right] K$$

- on single particle Hamiltonian


$$U_S \hat{H} U_S^{\dagger} = -\hat{H} \qquad (U_S)_{ij} = (-1)^j \delta_{ij}$$

Trivial phase J' > J

- conventional band insulator
- excitation gap
- filling n=1/2
- decoupled limit J=0

$$|\psi\rangle = \prod_{i \in \text{odd}} (c_i^{\dagger} + c_{i+1}^{\dagger})|0\rangle$$

topological phase transition

gapless state

Topological phase J > J'

- bulk excitation gap
- half filling n=1/2
- four-fold degenerate ground state for open chain

zero energy modes localized at the edges

Topological insulators: fermionic SSH model

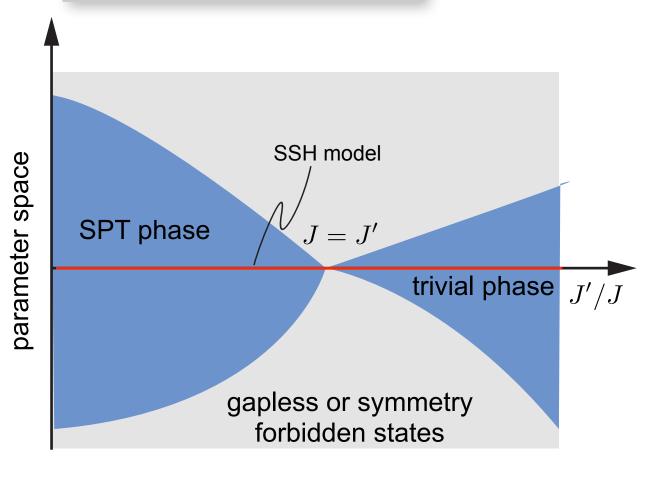
SPT phase

 properties of the SSH model are robust under any perturbation commuting with the symmetry

- four-fold degenerate ground state for open chain
- zero energy modes localized at the edge

Perturbations respecting the symmetry

- random variations of the hopping
- longer range hoppings between the chains


$$c_{i+3}^{\dagger}c_i + c_i^{\dagger}c_{i+3}$$

Perturbations breaking the symmetry

- next-nearest neighbor hopping

$$c_{i+2}^{\dagger}c_i + c_i^{\dagger}c_{i+2}$$

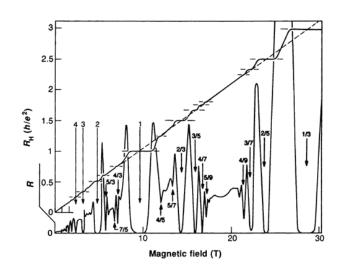
- on-site shifts $c_i^\dagger c_i$

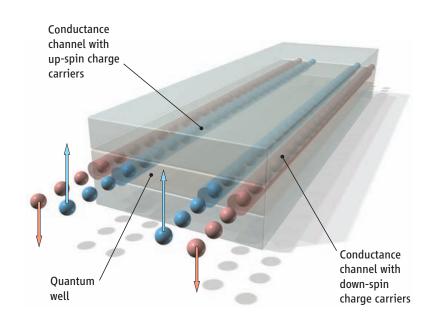
Topological phases: condensed matter

Integer quantum Hall effect (1980):

- 2D electron gas in a strong magnetic field
- present for non-interacting fermions

Fractional quantum Hall effect (1982):


- 2D electron gas in a strong magnetic field
- strong interactions between the particles


Spin-1 anti-ferromagnets in 1D (1990):

- realization of a bosonic SPT phase
- protecting symmetry SO(3)
- NENP materials [Ni(C₂H₈N₂)₂(NO₂)]CIN₄

Topological insulators (2007):

- spin-Hall effect in HgTe quantum wells
- time-reversal symmetry

Topological phases: artificial matter

Artificial matter

- cold atomic gases in optical lattices
- Ion traps
- Photonic circuits

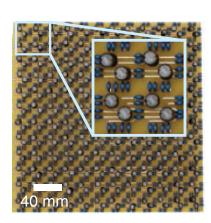
-

Topological phases: artificial matter

Topological band structures and edge modes

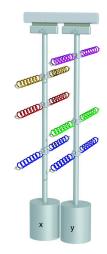
- motivated by topological phases for non-interacting fermions
- probing spectrum of a single particle Hamiltonian
- property of the coupling matrix

accessible in classical and quantum systems


Edge modes in photonic systems:

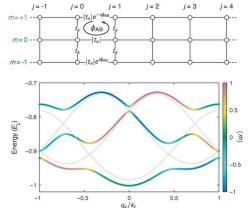
- optical regime

 Hafezi, et al, Nat Phot. 2013


 Rechtsman et al, Nature 2013
- radio-frequencies

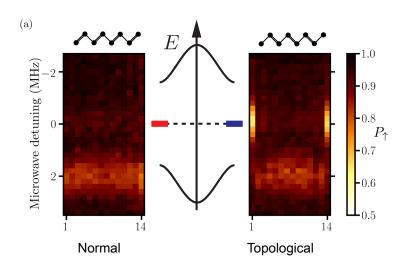
 Ningyuan et al. PRX 2015

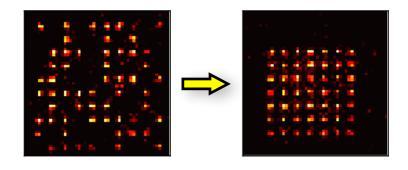
Classical coupled pendulums:


- time reversal invariant Süsstrunk Huber, Science 2015
- driven rotating pendulums
 Nash et al., PNAS 2015

Cold atomic gases

- artificial gauge fields Stuhl et al, Science, 2015
- artificial dimensions Mancini et al, Science, 2015
- optical lattices and lattice shaking

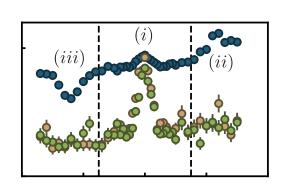

Jotzu et al. Nature 2014, Aidelsburger et al. Nat. Phys. 2014 Lohse et al. Nat. Phys. 2015, Flaschner et al. Science 2016



Outline

Experimental setup with Rydberg atoms

- single atoms in optical tweezers
- assembly of arbitrary structures


Edge modes in the SSH model

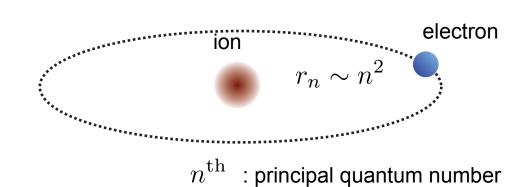
(S. de Léséleuc, et al, arXiv:1810.13286)

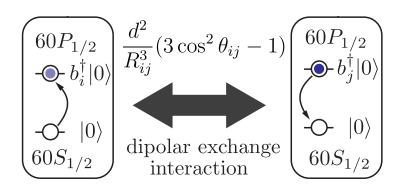
- single particle physics (independent on statistics)
- observation of localized edge modes

Symmetry protected topological phase (S. de Léséleuc, et al, arXiv:1810.13286)

- ground state of the interacting many-body system at half filling
- Spectroscopic detection of zero energy edge states

Rydberg atoms

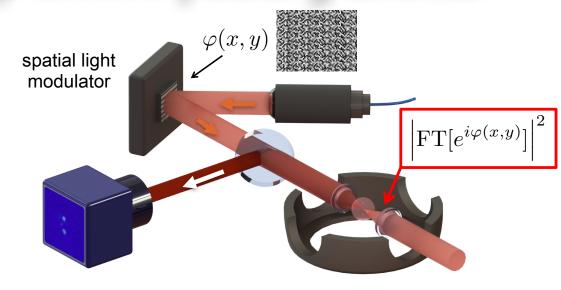

- one electron excited into a state with high principal quantum number n
- here, Rubidium atoms *n*~40 -100, excited into s-states and p-states


Rydberg-Rydberg interaction

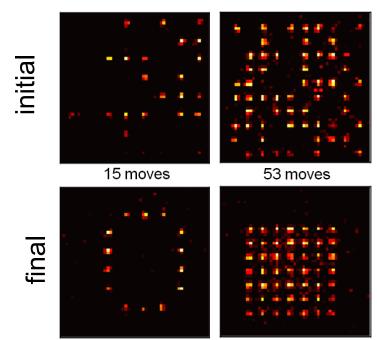
- strong van der Waals interactions between Rydberg states
 - attractive or repulsive

$$-C_6 \sim n^{11}$$

- dipolar exchange interactions
 - exchange of excitation between two different Rydberg states
 - $d \sim n^2$

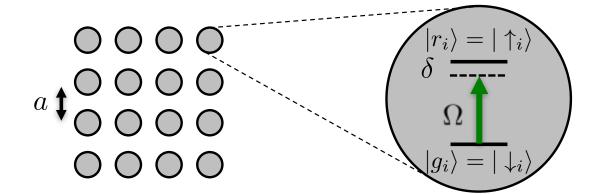


Single atoms trapped in optical tweezers

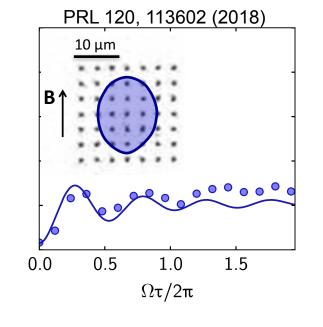

- individual traps for a single atom
- not in ground state of the trapping potential
- single site resolution

Deterministic assembly in arbitrary structures and lattices

- loading from a cold thermal cloud
 - stochastic loading
- prepare lattice structure by moving the filled traps
- prepare arbitrary 2D as well as 3D structures
- achieved by different groups:
 Paris (2D) Science 354, 1021 (2016)
 Harvard (1D), Science 354,1024 (2016)
 Korea (2D), Nat. Comm. 7, 13317 (2016)



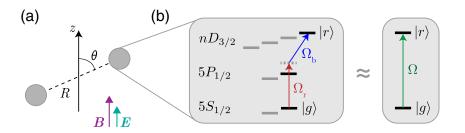
Barredo, et al., Science 354, 1021 (2016)

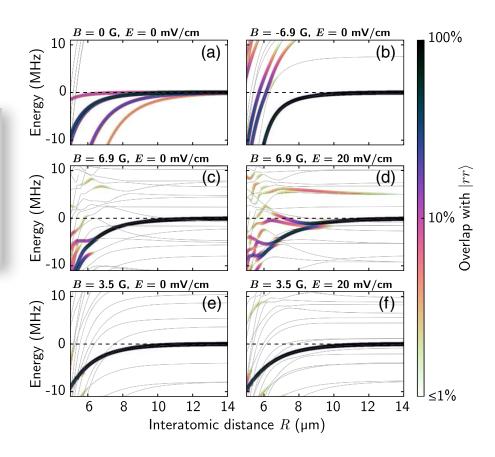

Quantum Ising like models

- all atoms coupled to a Rydberg S-state
- van der Waals interaction between Rydberg states

Quantum simulation of spin models

- non-equilibrium quench dynamics
- time dependent driven and disordered systems
- dissipative systems by including spontaneous decay
- Labuhn, et. al., Nature 534, 667 (2016)
- Bernien, et al., Nature 551, 579 (2017)

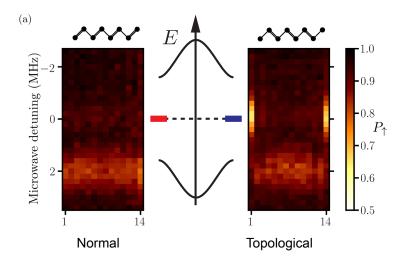

- ..

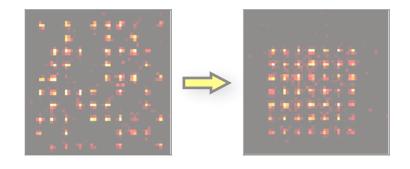

Importance of microscopic details of interaction potentials

- pair-interactions are in general much more complex than pure van der Waals
- many crossings with additional Rydberg pair states

A Rydberg interaction calculator

- open source software
- S. Weber, *et al.,* J. Phys. B **50**, 133001 (2017)

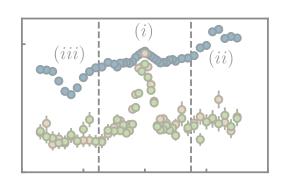




Outline

Experimental setup with Rydberg atoms

- single atoms in optical tweezers
- assembly of arbitrary structures

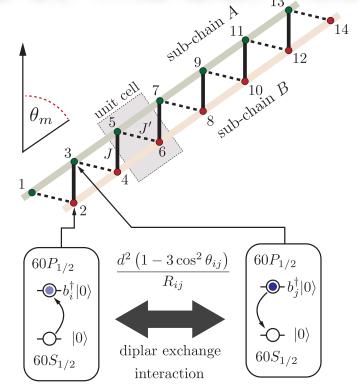

Edge modes in the SSH model

(S. de Léséleuc, et al, arXiv:1810.13286)

- single particle physics (independent on statistics)
- observation of localized edge modes

Symmetry protected topological phase (S. de Léséleuc, et al, arXiv:1810.13286)

- ground state of the interacting many-body system at half filling
- Spectroscopic detection of zero energy edge states



Single particle properties of the SSH model

Hamiltonian of the single particle SSH model for bosons

- all atoms in a Rydberg S-state
- bosonic excitation: Rydberg P-state
- hopping by dipolar exchange on a dimerized chain

$$H = \sum_{ij} b_i^{\dagger} \hat{H}_{ij} b_j = \sum_{i \in A, j \in B} J_{ij} \left[b_i^{\dagger} b_j + b_j^{\dagger} b_i \right]$$

Chiral symmetry

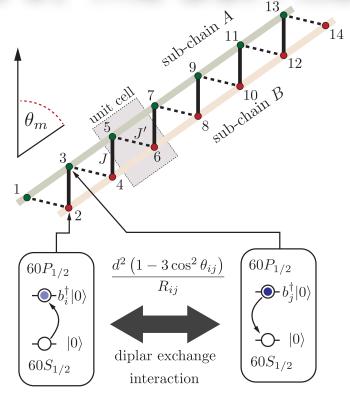
- unitary matrix with

$$U_S \hat{H} U_S^{\dagger} = -\hat{H}$$

- here, we obtain

$$(U_S)_{ij} = (-1)^j \delta_{ij}$$

- chiral symmetry does not allow for hopping within the same sub-chain
- dipolar hopping naturally gives rise to longer range hopping


Here, we satisfy the symmetry by employing the anisotropy of the dipole-dipole interaction

Single particle properties of the SSH model

Hamiltonian of the single particle SSH model for bosons

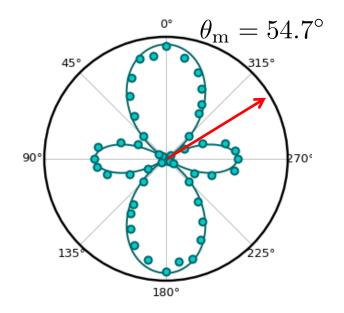
- all atoms in a Rydberg S-state
- bosonic excitation: Rydberg P-state
- hopping by dipolar exchange on a dimerized chain

$$H = \sum_{ij} b_i^{\dagger} \hat{H}_{ij} b_j = \sum_{i \in A, j \in B} J_{ij} \left[b_i^{\dagger} b_j + b_j^{\dagger} b_i \right]$$

Chiral symmetry

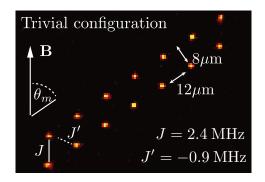
- unitary matrix with

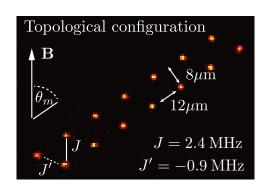
$$U_S \hat{H} U_S^{\dagger} = -\hat{H}$$


- here, we obtain

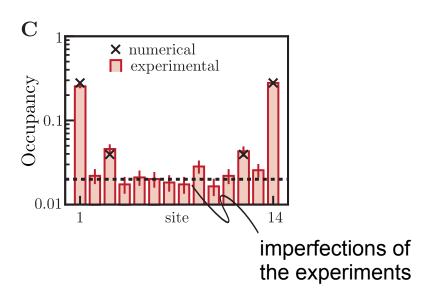
$$(U_S)_{ij} = (-1)^j \delta_{ij}$$

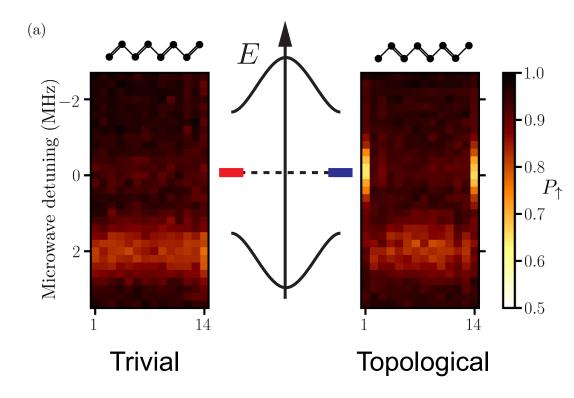
experimentally measured


angular dependence

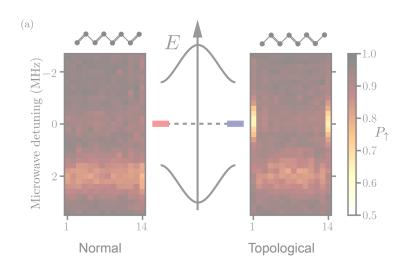


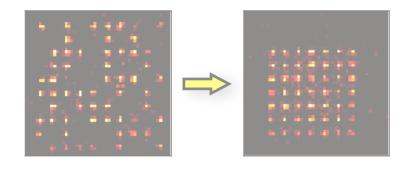
Edge modes of the SSH model


Spectroscopy of the spectrum


- microwave field coupling the S-state to to the Rydberg P-state
- no-momentum transfer: only couple to half of the states
- observation of zero energy states localized at the edge of the system

Edge state localization

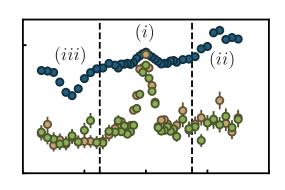




Outline

Experimental setup with Rydberg atoms

- single atoms in optical tweezers
- assembly of arbitrary structures


Edge modes in the SSH model

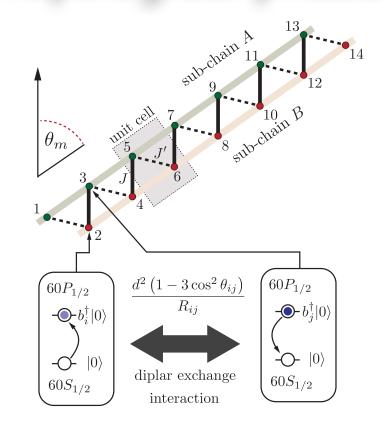
(S. de Léséleuc, et al, arXiv:1810.13286)

- single particle physics (independent on statistics)
- observation of localized edge modes

Symmetry protected topological phase (S. de Léséleuc, et al, arXiv:1810.13286)

- ground state of the interacting many-body system at half filling
- Spectroscopic detection of zero energy edge states

Topological phases with Bosons


 non-interacting Bosons always from a BEC

topological phases with bosons require strong interactions

Here: hard-core bosons

- full classification of SPT phases for interacting Bosons in one-dimension
 F. Pollman, et al., PRB 81, 064439 (2010)
 X.-G. Wen, et al, Science (2012).
- different SPT phases carry different projective symmetry on the edge
- classification in terms of twisted cohomology group

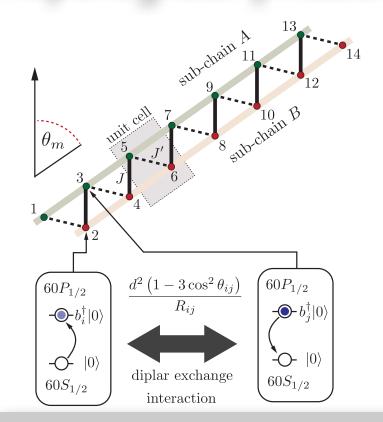
Bosonic version of the SSH model

- hardcore bosons in one dimension
- Jordan Wigner transformation: $b_j = e^{i\pi \sum_{k < j} c_k^{\dagger} c_k} c_j$
 - non-local transformation
 - longer range hopping give rise to interactions

non-interacting fermions

hard-core bosons

Fermions


- Hamiltonian

$$H = -J \sum_{i \in \text{even}} c_{i+1}^{\dagger} c_i - J' \sum_{i \in \text{odd}} c_{i+1}^{\dagger} c_i + h.c.$$

chiral symmetry

$$S_S = \prod_i \left[c_i + (-1)^i c_i^{\dagger} \right] K$$

Bosons

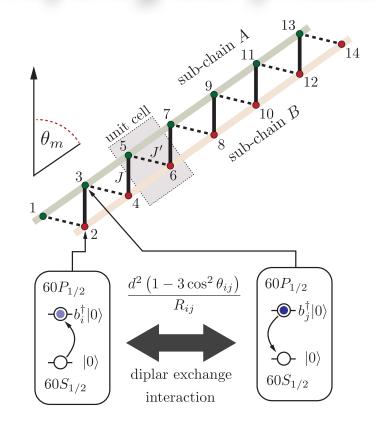
- Hamiltonian

$$H = -J \sum_{i \in \text{even}} b_{i+1}^{\dagger} b_i - J' \sum_{i \in \text{odd}} b_{i+1}^{\dagger} b_i + h.c.$$

- symmetry

ymmetry complex
$$\mathcal{S}_B = \prod_i \left[b_i^\dagger + b_i
ight] K$$

Protecting symmetries


- particle conservation

- discrete operation
$$\mathcal{S}_B = \prod_i \left[b_i^\dagger + b_i
ight] K$$

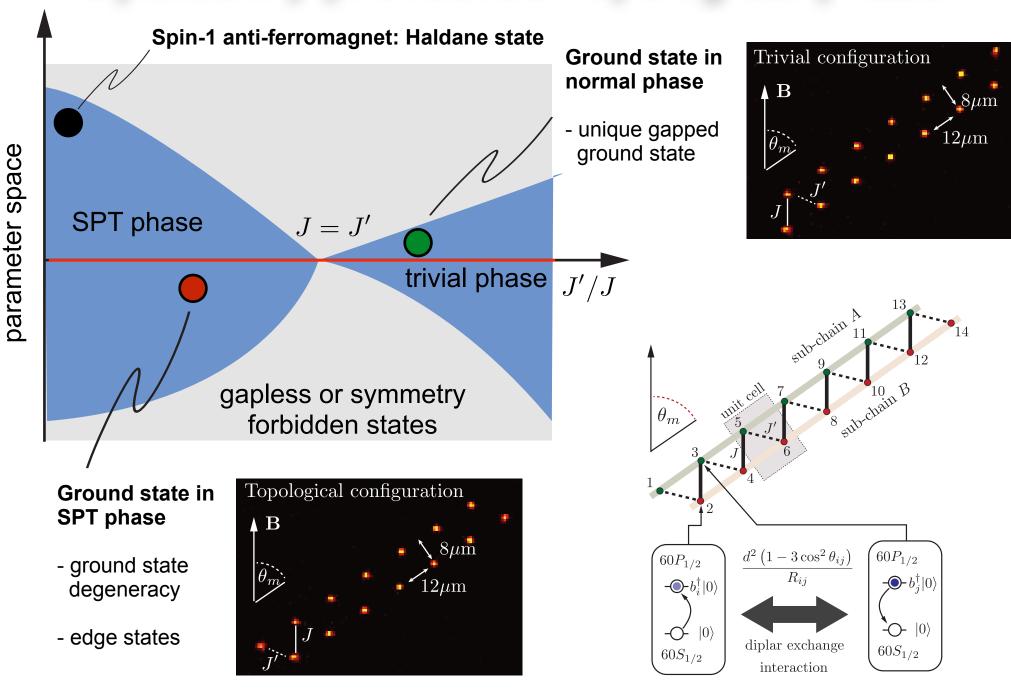
- symmetry group $U(1) imes Z_2^T$
- Hamiltonian $[H, \mathcal{S}_B] = 0$
- allows for 4 different SPT phases X.-G. Wen, et al, Science (2012).

SPT phase

- gapped ground state at half-filling
- four-fold ground state degeneracy
- zero energy edge states

Special point: J'=0

$$|m,m'\rangle = \left(b_1^{\dagger}\right)^m \left(b_L^{\dagger}\right)^{m'} \prod_{i \in \text{even}} \frac{1}{\sqrt{2}} \left(b_i^{\dagger} + b_{i+1}^{\dagger}\right) |0\rangle$$

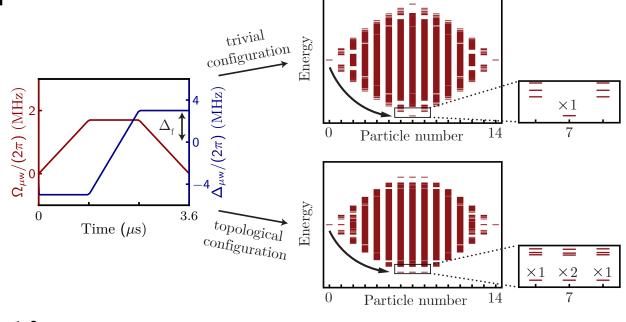

Perturbations respecting the symmetry:

arbitrary hoppings (also complex)

$$b_i^{\dagger}b_j + b_j^{\dagger}b_i$$

- interactions

$$\left(b_i^{\dagger}b_i - 1/2\right)\left(b_j^{\dagger}b_j - 1/2\right)$$

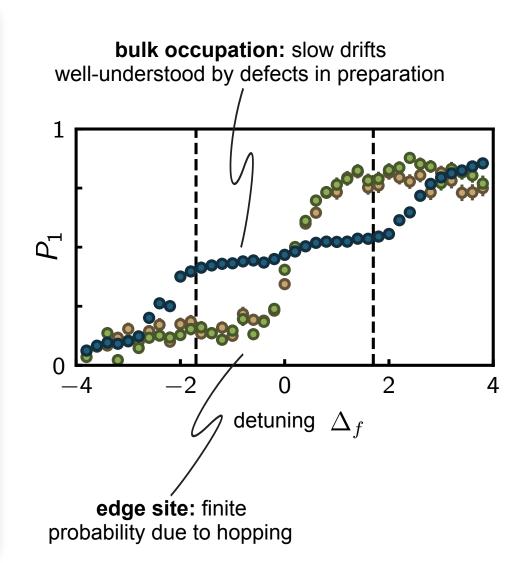

Preparation of ground state at half-filling


Adiabatic preparation of quantum many-body ground state

- prepare the ground state at half-filling
- highly efficient due to large gap
- ramping scheme motivated for prefect dimerization

Full numerical simulation

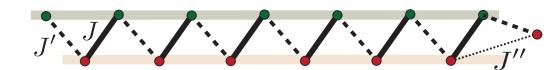
- efficient preparation of ground state
- high fidelity to prepare exactly ground state with N/2 excitations

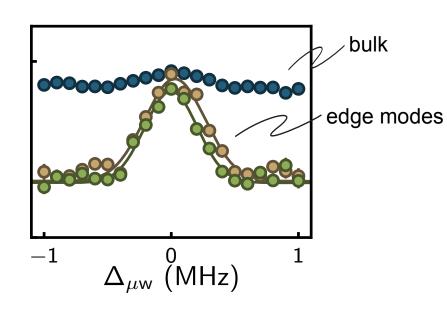

Characterization of topological phase

- half-filling in the bulk
- occupation of edge states depending on ramping procedure

ground state degeneracy

- zero-energy modes in spectroscopy
- robust to perturbation
- absence of any spontaneous symmetry breaking
- experimental detection of string order parameter


Characterization of topological phase


- half-filling in the bulk
- occupation of edge states depending on ramping procedure

ground state degeneracy

- zero-energy modes in spectroscopy
- robust to perturbation
- absence of any spontaneous symmetry breaking
- experimental detection of string order parameter

- edge modes excitation is at zero detuning
- in perturbed and unperturbed setup
- line-width well accounted for by finite pulse shape

Characterization of topological phase

- half-filling in the bulk
- occupation of edge states depending on ramping procedure

ground state degeneracy

- zero-energy modes in spectroscopy
- robust to perturbation
- absence of any spontaneous symmetry breaking
- experimental detection of string order parameter

- correlation function

$$C_{ij} = \langle n_i n_j \rangle - \langle n_i \rangle \langle n_j \rangle$$

- one excitation shared between two dimers

Characterization of topological phase

- half-filling in the bulk
- occupation of edge states depending on ramping procedure

ground state degeneracy

- zero-energy modes in spectroscopy
- robust to perturbation
- absence of any spontaneous symmetry breaking
- experimental detection of string order parameter

- string order parameter
$$Z_i = 1 - b_i^\dagger b_i$$

$$C_{\rm string}^z = -\left\langle Z_2 \ e^{i\frac{\pi}{2}\sum_{k=3}^{N-2}Z_k} \ Z_{N-1} \right\rangle$$

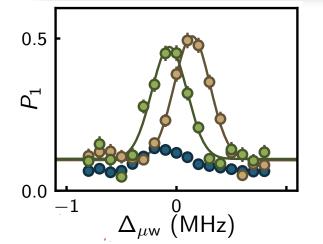
	C^z	C^x	C_{string}^z	$C_{ m string}^x$
Th. (no errors)	-0.96	0.98	0.78	0.88
Full simulation	-0.69(1)	0.68(2)	0.11(2)	0.10(2)
Experiments	-0.67(1)	0.48(2)	0.11(2)	0.05(2)

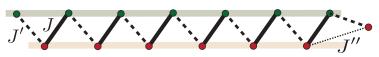
Does the different symmetry between bosons and fermions play a role?

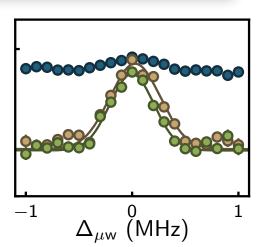
Non-interacting Fermions

- SSH chain requires chiral symmetry

$$S_S = \prod_i \left[c_i + (-1)^i c_i^{\dagger} \right] K$$

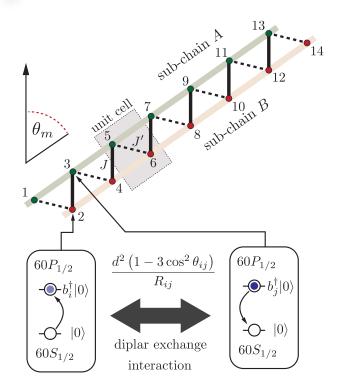

- only hopping between the sub-chains
- also required for single particle Hamiltonian

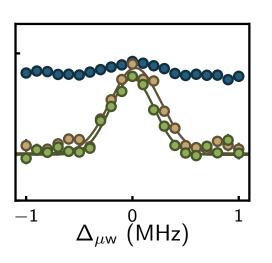

Interacting bosons


- protecting symmetry

$$S_B = \prod_i \left[b_i^{\dagger} + b_i \right] K$$

- allows arbitrary hopping
- robust ground state degeneracy by shifting the edge atom


Summary


Edge modes in the SSH model

- implementation of the chiral symmetry
- observation of localized edge modes
- verification of exponential splitting of energy with system size
- benchmarking the experimental results with theoretical predictions

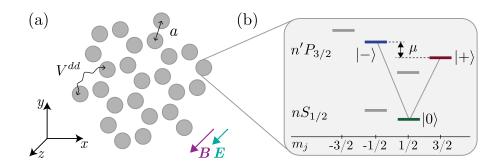
Symmetry protected topological phase

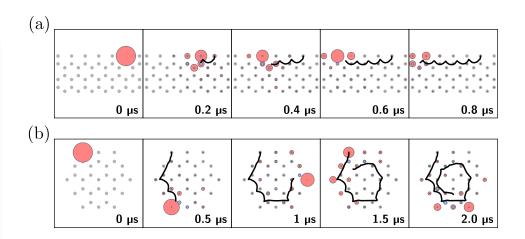
- ground state of the interacting many-body system at half filling
- first realization of a symmetry protected topological phase in artificial
- quantum simulation of novel states of matter

Outlook

Topological band structure

- dipolar exchange interactions
- spin-orbit coupling due to anisotropy of dipole-dipole interaction
- Chern number C=1 or C=2
- probing dynamics of edge states


quantum many-body states?



fractional bosonic Chern insulators?

dynamical preparation?

competition with losses?

