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How to characterize states of matter?

Characterize phases  
of matter 
- based on Landau paradigm 
- symmetry breaking  
- order parameter and long range order 
- thermal and quantum phase transitions

phase diagram of water

broken translation  
symmetry

Extremely successful 
- band insulator/Fermi liquids 

- crystals 

- superfluids 
   

 
- superconductors 
 
- ferromagnets and 
  anti-ferromagnets

- Bose-Einstein condensate 
- superfluid Helium
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But, not all states of matter  

follow this paradigm 



Characterizing ground states  
of quantum many-body  
systems at T=0 
 
- absence of symmetry breaking 
 
- gapped phases  

Topological phases

local Hamiltonians

gapped  
Hamiltonians*

Definition: 

two states are in the same topological 
phase if they can be smoothly 
transformed into each other without 
closing the gap

Example in 2D:  
integer quantum Hall states, fractional quantum 
Hall states, toric code, 

Are there other topological  
phases also in 1D?

Two dimensions



Symmetry protected topological phases

gapped  
Hamiltonians*

local Hamiltonians local Hamiltonians

gapped symmetric 
Hamiltonians*

require a 
symmetry

- restrict to systems, which  
  satisfy a certain symmetry 
 
- symmetry group         withS

One dimension



- sub-lattice (chiral) symmetry 
  (anti-unitary operator) 
 
 
 
- on single particle Hamiltonian

Topological insulators: fermionic SSH model
- non-interacting Fermions 

- Hamiltonian 
 
 
 
 
 
 
- gapped ground state at half-filling 
 
- 10-fold way classifications  
  of topological insulators 
  (Chiu, et al., RMP 2016; Ludwig, 2016)
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Topological insulators: fermionic SSH model

SPT phase

trivial phase

gapless or symmetry  
forbidden states

J = J 0

J 0/J
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SPT phase 

- properties of the SSH model 
  are robust under any perturbation 
  commuting with the symmetry 

SSH model

- four-fold degenerate ground  
  state for open chain 

- zero energy modes  
  localized at the edge

Perturbations respecting 
the symmetry 

- random variations of the hopping 

- longer range hoppings between  
  the chains

Perturbations breaking 
the symmetry 

- next-nearest neighbor hopping 
 
 
 
- on-site shifts

c†i+2ci + c†i ci+2

c†i ci

c†i+3ci + c†i ci+3



Topological phases: condensed matter
Integer quantum Hall effect (1980): 
 
- 2D electron gas in a strong magnetic field 
 
- present for non-interacting fermions

Fractional quantum Hall effect (1982): 
 
- 2D electron gas in a strong magnetic field 

- strong interactions between the particles

Spin-1 anti-ferromagnets in 1D (1990): 
 
- realization of a bosonic SPT phase 
 
- protecting symmetry SO(3) 

- NENP materials [Ni(C2H8N2)2(NO2)]ClN4

Topological insulators (2007): 
 
- spin-Hall effect in HgTe quantum wells 
 
- time-reversal symmetry

Quantum Spin Hall Insulator State
in HgTe Quantum Wells
Markus König,1 Steffen Wiedmann,1 Christoph Brüne,1 Andreas Roth,1 Hartmut Buhmann,1
Laurens W. Molenkamp,1* Xiao-Liang Qi,2 Shou-Cheng Zhang2

AUTHORS’ SUMMARY

The discovery more than 25
years ago of the quantum
Hall effect (1), in which the

“Hall,” or “transverse electrical” con-
ductance of a material is quantized,
came as a total surprise to the physics
community. This effect occurs in
layered metals at high magnetic
fields and results from the forma-
tion of conducting one-dimensional
channels that develop at the edges
of the sample. Each of these edge
channels, in which the current moves
only in one direction, exhibits a quan-
tized conductance that is character-
istic of one-dimensional transport. The
number of edge channels in the sam-
ple is directly related to the value of
the quantumHall conductance.More-
over, the charge carriers in these chan-
nels are very resistant to scattering.
Not only can the quantum Hall effect be observed in macroscopic samples
for this reason, but within the channels, charge carriers can be transported
without energy dissipation. Therefore, quantum Hall edge channels may be
useful for applications in integrated circuit technology, where power dis-
sipation is becomingmore andmore of a problem as devices become smaller.
Of course, there are some formidable obstacles to overcome—the quantum
Hall effect only occurs at low temperatures and high magnetic fields.

In the past few years, theoretical physicists have suggested that
edge channel transport of current might be possible in the absence of a
magnetic field. They predicted (2–4) that in insulators with suitable
electronic structure, edge states would develop where—and this is
different from the quantum Hall effect—the carriers with opposite
spins move in opposite directions on a given edge, as shown sche-
matically in the figure. This is the quantum spin Hall effect, and its
observation has been hotly pursued in the field.

Although there are many insulators in nature, most of them do not have
the right structural properties to allow the quantum spin Hall effect to be
observed. This is where HgTe comes in. Bulk HgTe is a II-VI semi-
conductor, but has a peculiar electronic structure: In most such materials,
the conduction band usually derives from s-states located on the group II
atoms, and the valence band from p-states at the VI atoms. In HgTe this
order is inverted, however (5). Using molecular beam epitaxy, we can
grow thin HgTe quantum wells, sandwiched between (Hg,Cd)Te barriers,
that offer a unique way to tune the electronic structure of the material: When
the quantum well is wide, the electronic structure in the well remains
inverted. However, for narrow wells, it is possible to obtain a “normal”
alignment of the quantumwell states. Recently, Bernevig et al. (6) predicted

theoretically that the electronic
structure of inverted HgTe quan-
tum wells exhibits the properties
that should enable an observation
of the quantum spin Hall insula-
tor state. Our experimental obser-
vations confirm this.

These experiments only be-
came possible after the devel-
opment of quantum wells of
sufficiently high carrier mobility,
combined with the lithographic
techniques needed to pattern the
sample. The patterning is espe-
cially difficult because of the very
high volatility of Hg. Moreover,
we have developed a special low–
deposition temperature Si-O-N
gate insulator (7), which allows
us to control the Fermi level (the
energy level up to which all

electronics states are filled) in the quantum well from the conduction band,
through the insulating gap, and into the valence band. Using both electron
beam and optical lithography, we have fabricated simple rectangular
structures in various sizes from quantum wells of varying width and
measured the conductance as a function of gate voltage.

We observe that samples made from narrow quantum wells with a
“normal” electronic structure basically show zero conductance when the
Fermi level is inside the gap. Quantum wells with an inverted electronic
structure, by contrast, show a conductance close to what is expected for the
edge channel transport in a quantum spin Hall insulator. This interpretation
is further corroborated by magnetoresistance data. For example, high–
magnetic field data on samples with an inverted electronic structure show a
very unusual insulator-metal-insulator transition as a function of field,
which we demonstrate is a direct consequence of the electronic structure.

The spin-polarized character of the edge channels still needs to be
unequivocably demonstrated. For applications of the effect in actual
microelectronic technology, this low-temperature effect (we observe it
below 10 K) will have to be demonstrated at room temperature, which may
be possible in wells with wider gaps.
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5. A. Novik et al., Phys. Rev. B 72, 035321 (2005).
6. B. A. Bernevig, T. L. Hughes, S.-C. Zhang, Science 314, 1757 (2006).
7. J. Hinz et al., Semicond. Sci. Technol. 21, 501 (2006).

RESEARCHARTICLES

Conductance 
channel with
down-spin 
charge carriers

Conductance 
channel with
up-spin charge 
carriers

Quantum
well

Schematic of the spin-polarized edge channels in a quantum spin Hall
insulator.
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Topological phases: artificial matter

Artificial matter 

- cold atomic gases in optical lattices 
 
- Ion traps 
 
- Photonic circuits 

- …..



Topological phases: artificial matter
Topological band structures  
and edge modes 

- motivated by topological phases  
  for non-interacting fermions 
 
- probing spectrum of a single particle Hamiltonian 
 
- property of the coupling matrix

accessible in classical 
and quantum systems

Edge modes in photonic  
systems: 
 
- optical regime 
   Hafezi, et al, Nat Phot. 2013 
   Rechtsman et al, Nature 2013 
 
- radio-frequencies 
  Ningyuan et al. PRX 2015 

Classical coupled pendulums: 
 
- time reversal invariant 
  Süsstrunk Huber, Science 2015 

- driven rotating pendulums 
   Nash et al., PNAS 2015

Cold atomic gases  
 
- artificial gauge fields 
  Stuhl et al, Science, 2015 

- artificial dimensions 
  Mancini et al, Science, 2015 
  
- optical lattices and  
  lattice shaking 
  Jotzu et al. Nature 2014, Aidelsburger et al. Nat. Phys. 2014 
  Lohse  et al. Nat. Phys. 2015, Flaschner et al. Science 2016 

resolve the spin-filtered dynamics at the single-lattice-site
level and employ nonlocal couplings to realize a Möbius
topology.
Our lattice may be viewed as a spin-dependent gauge

field for RF photons in a network of capacitively coupled
inductors, where the spin state is encoded in two equivalent
inductors on each lattice site. The simplicity of the
approach paves the way for straightforward implementa-
tions of spin-orbit coupled quantum wires, fractional
quantum hall systems, and proximity-coupled TI super-
conductors, all within the circuit QED framework [35].

I. ENGINEERING TOPOLOGICAL CIRCUITRY

Topological insulators (TI) insulate in their bulk and
conduct on their surfaces; their unique behaviors were first
observed in high-purity two-dimensional electron gases
(2DEGs) [36]. As in a conventional band insulator, a full
valence band in a topological insulator leads to zero
conductance in the bulk. The surface of such a system,
however, possesses spin-filtered edge modes [37] residing
in the energy-gap between valence and conduction bands.
These modes arise from a topological phase transition at the
boundary of the topological insulator. Within the TI, in the
absence of magnetic disorder, Sz is conserved and particles
within the resulting spin subbands acquire a finite Berry
phase when they circulate the Brillioun zone, which results
in a nonzero spin-Chern number (C↑↓) [38]. Wave-function
continuity quantizes the Berry phase to multiples of 2π,
precluding a smooth drop to zero across the boundary out
of the TI and leading (via the bulk-boundary correspon-
dence [39]) to a set of midgap topologically protected
edge modes.
There are a variety of ways to engineer topologically

nontrivial band structures in lattice models, which may be
classified either as time-reversal-symmetry conserving or
breaking. Among the time-reversal-breaking models,
the simplest arises when a constant magnetic field is
applied to a charged particle confined in a two-dimensional
periodic structure, as described by Hofstadter [40,41]. The
time-antisymmetric Lorentz force is equivalent to an
Aharanov-Bohm phase (flux) per plaquette ϕ ¼ 2πM=N
(for relatively prime integers M;N). This flux breaks the
intrinsic translational invariance of the lattice, resulting in
an effective unit cell of size N sites and N corresponding
subbands.
To realize magnetic-field-like physics in the absence of

magnetic fields, or (as in the present work) for charge-
neutral photons, one can introduce a pseudospin degree of
freedom in analogy to the spin-Hall effect. Opposing spin
states are made to experience opposing magnetic fields
through spin-orbit coupling. Such models, which “break”
time-reversal symmetry oppositely for up and down spins,
thus do not violate the symmetry at all. They produce two
copies of the Hofstadter model, exhibiting opposite effec-
tive magnetic fields everywhere in space for the two spin

states, without the need for an applied magnetic field. In the
solid state, such models rely on either Dresselhaus or
Rashba spin-orbit couplings [39], arising from atomic spin-
orbit interactions and relativistic coupling to static electric
fields, respectively.
In the present work, we generate spin-orbit coupling

through local circuit connections [Figs. 1(a) and 1(b)]: Two
arrays of inductors provide the up- and down-spin RF
photons, while the kinetic couplings are provided by
capacitors that induce a flux per plaquette of ϕ ¼ π=2 ¼
2π=4, e.g., M ¼ 1, N ¼ 4 in the corresponding Hofstadter
model. As such, this flux requires a lattice with a “mag-
netic” unit cell ofN ¼ 4 × 1 sites in order to ensure the flux
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FIG. 1. (a) Circuit topological insulator schematic. The periodic
structure is formed by on-site inductors and coupling capacitors
(black) that are connected via a latticework of wires (light and
dark blue lines). At each lattice site, the two inductors “A” and
“B” correspond to right and left circularly polarized spins. When
a photon traverses a single plaquette (indicated by orange), it
accumulates a Berry phase of π=2. The phase is induced by
braiding [indicated by the green boxes and specified in (b)] of the
capacitive couplings. (b) Structure of the coupling elements
between lattice sites. Each row shows one of the four rotation
angles implemented by the capacitive coupling in the circuit. The
rotation angle (left column) is induced by connecting inductors as
shown (middle column). The corresponding rotation matrices
(right column) indicate the inductors being coupled, as well as the
signs of the couplings. (c) Photograph of circuit topological
insulator. The inductors (black cylinders) are coupled via the
capacitors (blue); circuit topology is determined by the trace
layout on the printed circuit board (yellow). Inset: Zoom-in view
of a single plaquette consisting of four adjacent lattice sites.

NINGYUAN et al. PHYS. REV. X 5, 021031 (2015)
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Outline

Edge modes in the SSH model 
(S. de Léséleuc, et al, arXiv:1810.13286) 

- single particle physics (independent on statistics) 
 
- observation of localized edge modes

Symmetry protected topological phase 
(S. de Léséleuc, et al, arXiv:1810.13286) 

- ground state of the interacting  
  many-body system at half filling 

- Spectroscopic detection of zero  
  energy edge states

Normal Topological
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Figure 4. Probing the SPT phase degeneracy and bulk excitation gap. (A) A microwave sweep ending at �f/(2⇡) =
�1 MHz first prepares the many-body ground state with 6 particles, and we then apply for 2µs a microwave probe with a Rabi
frequency ⌦µw/(2⇡) = 0.3 MHz and a variable detuning �µw. (B) Zoom on the bottom of the energy spectrum of a chain in
the topological configuration. Starting from the ground state with 6 particles (solid disk), we can (i) reach one of the other
degenerate ground states by adding a particle at the edge for zero energy cost. In addition, we can probe the bulk excitation
gap by (ii) adding a particle to, or (iii) removing a particle from, the bulk. (C) Measured occupancy of bulk (blue) and edge
sites (green and brown) showing the three expected transitions. Error bars are s.e.m.

is added at zero energy at the edge, and we reach an-
other of the four degenerate ground states, (ii) particles
are added to the bulk, which requires at least the bulk
gap in energy, while (iii) particles are removed from the
bulk, which appears as a dip at negative detuning.

PROBING THE PROTECTING SYMMETRY

We finally probe the robustness of the four-fold ground
state degeneracy to small perturbations, which respect
the protecting symmetry SB. To do so, we distort the
chain on one side by moving the rightmost site out of
the sub-lattice B, see Fig. 5A. As the edge site and its
second neighbor are not at the ‘magic angle’ anymore,
this creates a coupling J

00
/h ' 0.26 MHz between them.

This perturbation breaks the chiral symmetry protect-
ing the fermionic SSH model, and correspondingly leads
to a splitting of the single-particle edge modes. How-
ever, such a perturbation commutes with the symme-
try SB and therefore should not break the many-body
ground state degeneracy. To check these expectations, we
first repeat the spectroscopic measurement in the single-
particle regime (applying the microwave probe on an
empty chain, as shown in Fig.2A), and observe a splitting
of the edge modes, see Fig. 5B. In contrast, the spectro-
scopic measurement for the bosonic many-body ground
state (applying the probe after the adiabatic prepara-
tion reaching half-filling of the bulk, as done in Fig. 4)
indeed reveals a degenerate ground state, see Fig. 5C.
In [32], we checked that when we prepare the ground
state with a half-filled bulk, i.e., when �f lies in the re-
gion |~�f | < |J | � |J 0|, the spectroscopic measurement
reveals a symmetry protected ground state degeneracy.

The above experiment illustrates that, in contrast to a
non-interacting SPT phase, the robustness of the bosonic
many-body ground state at half-filling cannot be under-
stood at the single-particle level. To gain an intuition for
the di↵erences between the SPT phase of non-interacting
fermions and of hard-core bosons, we use the following
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Figure 5. Perturbation and robustness of the bosonic
topological phase. (A) The rightmost site is shifted up-
wards to give a finite hopping amplitude J 00 to the second
neighbor. (B,C) Probability to find a particle in the left
(green) and right (brown) edge sites when scanning the de-
tuning �µw of the microwave probe. The experiment is per-
formed either on (B) an initially empty chain to observe the
energy di↵erence between the two single-particle edge modes
caused by the perturbation J 00 or (C) on the many-body
ground state with a half-filled bulk (6 particles in a 14-site
chain) to observe the protection of the ground state degener-
acy. Solid lines are Gaussian fits from which we extract an
energy di↵erence of 0.21(1) MHz in (B) and 0.03(2) MHz in
(C).

simple picture. Considering only the three rightmost
sites (the edge and a dimer), and taking the perturba-
tive limit (J � J

0
, J

00), we first obtain the energy of
having no particle on the edge site and one delocalized
on the dimer: �J � (J 0 + J

00)2/ (2J) (the second term is
an energy correction due to virtual hopping of the par-
ticle from the bulk to the edge). On the contrary, when
there is one particle on the dimer and one on the edge, we
obtain �J � (J 0 ± J

00)2/ (2J) with an energy correction
now depending on the particle quantum statistics (+ sign
for bosons, � for fermions, due to commutation rules).
More details can be found in S3.3 of [32]. This simplified
model captures why the fermionic degeneracy is broken

Experimental setup with  
Rydberg atoms  
- single atoms in optical tweezers 
 
- assembly of arbitrary structures



Rydberg-Rydberg interaction 

- strong van der Waals interactions  
  between Rydberg states 

- dipolar exchange interactions

- exchange of excitation between 
  two different Rydberg states 
 
- 

Experimental setup with Rydberg atoms

Rydberg atoms 

- one electron excited into a state  
  with high principal quantum  
  number n 

- here, Rubidium atoms n~40 -100, 
  excited into s-states and p-states 

electronion
rn � n2

nth : principal quantum number

d � n2

- attractive or repulsive 

- C6 � n11

A

B

C

D

Figure 1: Bosonic SSH model. (A) Dimerized one-dimensional lattice and the two sub-lattices
A and B. The staggered nearest neighbor hopping energies are denoted as J and J

0 with
|J | > |J 0|. (B) Each lattice site hosts a Rydberg atom with two relevant levels: 60S1/2 be-
ing the vacuum state |0i and 60P1/2 describing a bosonic particle b

†
i |0i. The dipolar exchange

interaction provides a hopping of the particles. (Inset in A) Angular dependence of the hopping
amplitude measured between two sites; filled (empty) disk: positive (negative) amplitude. It
vanishes and changes sign at the angle ✓m ' 54.7�. The solid line is the theoretical prediction .
Error bars, denoting

::
of

:
the standard

:::::::
angular

:::::::::::::
dependence.

:::::::::
Standard

:
error of the mean (s.e.m.) ,

::
of

:::
the

:::::
data are smaller than the symbol size. (C-D) Single-shot fluorescence images of the atoms

assembled in the artificial structure for the topological (C) and the trivial (D) configuration. The
chain is tilted by the angle ✓m to cancel couplings between sites in the same sub-lattice.

17



Experimental setup with Rydberg atoms

Deterministic assembly in arbitrary 
structures and lattices 

- loading from a cold thermal cloud 
  
 
- prepare lattice structure by moving 
  the filled traps 
 
- prepare arbitrary 2D as well  
  as 3D structures 

- achieved by different groups:  
  Paris (2D) Science 354, 1021 (2016) 
  Harvard (1D), Science 354,1024 (2016) 
  Korea (2D), Nat. Comm. 7, 13317 (2016)

Single atoms trapped in optical 
tweezers 

- individual traps for a single atom 
 
- not in ground state of the trapping potential 
 
- single site resolution

in
iti

al
fin

al

Barredo, et al., Science 354, 1021 (2016)

- stochastic loading

spatial light  
modulator

���FT[ei'(x,y)]
���
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'(x, y)



Experimental setup with Rydberg atoms
Quantum Ising like models 

- all atoms coupled to a Rydberg S-state 
 
- van der Waals interaction between  
  Rydberg states 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transverse  
field

longitudinal  
field

Ising type interaction

Quantum simulation of spin models 

- non-equilibrium quench dynamics 
 
- time dependent driven and disordered systems 

- dissipative systems by including spontaneous decay 

- Labuhn, et. al., Nature 534, 667 (2016) 
- Bernien, et al., Nature 551, 579 (2017) 
- …

0–20 mV=cm so as to maximize Prr. For θ ≈ 0 the system
is faithfully described by a spin-1=2 system. For increasing
θ, we identify the range of magnetic fields where Rydberg
blockade is maintained. In addition, we observe a breaking
of the Rydberg blockade for negative B as predicted in

Ref. [26]. A similar analysis for various principal quantum
numbers n indicates that the presence of a Förster reso-
nance at n ¼ 59 is responsible for this sensitivity to weak
electric fields [29,31].
Now that we have identified parameters allowing us to

map our two-atom system onto a spin-1=2 model, we
extend the study to larger systems. We first revisit the
experimental realization of an 8-atom ring, reported in
Ref. [10], where we observed a discrepancy with the spin-
1=2 model. We apply a Rydberg excitation pulse and
observe the ensuing dynamics by measuring the fraction fR
of atoms that are excited to Rydberg states. We also extract
the probability P5þ that more than five atoms are excited,
i.e., that the blockade condition is violated, as, for our
parameters, nearest-neighbor excitation is thwarted. Prior
to this experiment we compensated the stray electric field
better than 5 mV=cm. Figures 6(a)–6(c) show the results
for two values of the magnetic field. For B¼ 6.9 G, we
observe a slow rise of P5þ above the prediction of the spin-
1=2 model. Contrarily, for B¼ 3.5 G, we find a much
better agreement with the spin-1=2 model as expected
from above.
We then probe a square array of 7 × 7 atoms [Figs. 6(d)–

6(f)]. As an exact simulation of the dynamics of the
49-atom system is no longer possible, we use the fact that
two neighboring atoms cannot be excited due to the

(a)

(b)

FIG. 5. Influence of θ, B, E on the mapping onto a spin-1=2
system. Calculated probability of double excitations at long
times (see text) as a function of the magnetic field B and the
angle θ. The interatomic distance is fixed at R¼ 6.5 μm. The
electric field is E¼ 0 in (a) and chosen between 0 and
20 mV=cm such that the probability for two Rydberg excita-
tions is maximized in (b).

(b) (c)

(e) (f)

(a)

(d)

FIG. 6. Dynamics of an ensemble of atoms under Rydberg excitation. (a) 8-atom ring with a nearest neighbor spacing of 6.5 μm. The
shaded ellipse illustrates the range of the anisotropic blockaded regionU > ℏΩ. (b) Evolution of the Rydberg fraction fR with the pulse
area Ωτ for B¼ 6.9 G. The inset shows the probability P5þ to observe configurations with at least 5 excitations. At large times, the
experimental points systematically lie above the results of a simulation of the corresponding spin-1=2 model (solid line). (c) Same
parameters with B¼ 3.5 G. (d) Square lattice of 7 × 7 traps (lattice spacing 6.1 μm). The blockade extends over nearest and next-
nearest neighbors. (e) Evolution of the Rydberg fraction forB¼ 6.9 G. Here the data show a slow increase in fR at long times, while the
spin-1=2 model predicts a saturation. (f) For B¼ 3.5 G, the agreement with the spin-1=2 model becomes very good. All figures: error
bars depict the standard error of the mean and are often smaller than the symbol size.
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Experimental setup with Rydberg atoms

Importance of microscopic details  
of interaction potentials 

- pair-interactions are in general much 
  more complex than pure van der Waals 
 
- many crossings with additional  
  Rydberg pair states 

simulation platforms, such as ultracold molecules, trapped
ions, or solid-state devices.
We use the Rydberg state jri ¼ jnD3=2; mJ ¼ 3=2i and

couple it to the ground state jgi ¼ j5S1=2; F¼ 2; mF ¼ 2i
by a two-photon transition [Fig. 1(b)]. Ideally we want to
identify the states jgi and jri with pseudo-spin-1=2 states
j↓i and j↑i. In this case, when taking into account
interactions between atoms in jri, the system maps onto
an Ising-like model in a transverse field [8–11] governed by
the Hamiltonian

H ¼
X

i

ℏΩ
2

σix þ
1

2

X

i≠j
Uijninj: ð1Þ

Here, Ω is the Rabi frequency corresponding to the laser
driving, σix ¼ jrihgji þ jgihrji and ni ¼ jrihrji, and the
rotating wave approximation has been applied. The inter-
action between atoms i and j is given at large distances by
an anisotropic van der Waals potential Uij ¼ C6ðθijÞ=R6

ij,
where Rij is the interatomic distance and θij the angle
between the internuclear axis and the quantization axis, see
Fig. 1(a).
We look for conditions allowing us to describe the

interaction spectrum for a pair of atoms by a single
potential curve UðR; θÞ as in Fig 1(c). To approach this
problem quantitatively, we diagonalize the dipole-dipole
Hamiltonian [28] (and higher-order multipole contribu-
tions) in the presence of arbitrary external electric and
magnetic fields [21]. In view of reproducing the experiment
of Ref. [10], we chose the state jri ¼ j61D3=2; mJ ¼ 3=2i.
Figure 2 shows the interaction spectrum for a generic angle
θ ¼ 78°. The shading of the interaction potentials shows

the overlap with jrri. In (a), no magnetic and electric fields
are applied, and some Zeeman pair states interact weakly,
while being still coupled to jggi. Consequently, the
Rydberg blockade is broken as the double excitation of
Rydberg states is possible even at short distances [23,24].
Panel (b) shows the potentials in the presence of a magnetic
field B¼ −6.9 G. The Zeeman effect splits the various
potentials and the state jrri is now isolated from the other
eigenstates. However, since the sign of the Zeeman shift is
identical to that of the van der Waals interaction, for
specific values of the interatomic distance R the laser
excitation of other Zeeman pair states is resonant; these
“magic distances” [26,29] can lead to a breakdown of the
blockade. In order to avoid this, one can use an opposite
value forB [panel (c), whereB¼ 6.9 G]. These parameters
are similar to the ones used in Ref. [10], and in these
conditions, it is a good approximation to describe the
system by a single state for R > 6 μm.
It turns out, however, that the interaction potentials are

extremely sensitive to electric fields E. Figure 2(d) corre-
sponds to the same parameters as in (c), but in the presence
of a field E¼ 20 mV=cm along z. A naive calculation of
the Stark shift of pair states for this value of Ewould give
shifts in the 100 kHz range, which would have hardly any

(e) (f)

(a) (b)

(c) (d)

FIG. 2. Influence of magnetic and electric fields on the
interaction potentials around the pair-state jrri where
jri ¼ j61D3=2; mj ¼ 3=2i, for θ ¼ 78°. The shading encodes
the overlap of the eigenstates with the noninteracting state jrri.
(a) B¼ 0 and E¼ 0: jrri overlaps with all the degenerate
Zeeman pair states. (b) B¼ −6.9 G and E¼ 0: the interaction
curves are split due to the Zeeman effect. Some curves still
strongly mix with jrri due to the interaction. (c) B¼ 6.9 G
and E¼ 0: one potential curve dominates. However, (d) the
addition of a small electric field E¼ 20 mV=cm is enough to
strongly perturb the pair states. (e),(f) This behavior is absent
for B¼ 3.5 G.

(a) (b)

(c)

FIG. 1. Mapping a system of multilevel Rydberg atoms onto a
spin-1=2 model. (a) System: Two atoms separated by a distance
R; θ is the angle between the interatomic axis and the quantiza-
tion axis z defined by a magnetic field B. An electric field E can
be applied along z. (b) A two-photon transition couples coher-
ently the ground state jgi to a target Rydberg state jri with an
effective two-photon Rabi frequency Ω. (c) Full energy spectrum
of the atom pair. The mapping consists in replacing this complex
structure by an effective interaction potential.
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ions, or solid-state devices.
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A Rydberg interaction calculator 

- open source software 
 
-  S. Weber, et al.,  J. Phys. B 50, 133001 (2017)



Outline

Edge modes in the SSH model 
(S. de Léséleuc, et al, arXiv:1810.13286) 

- single particle physics (independent on statistics) 
 
- observation of localized edge modes

Symmetry protected topological phase 
(S. de Léséleuc, et al, arXiv:1810.13286) 

- ground state of the interacting  
  many-body system at half filling 

- Spectroscopic detection of zero  
  energy edge states
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Figure 4. Probing the SPT phase degeneracy and bulk excitation gap. (A) A microwave sweep ending at �f/(2⇡) =
�1 MHz first prepares the many-body ground state with 6 particles, and we then apply for 2µs a microwave probe with a Rabi
frequency ⌦µw/(2⇡) = 0.3 MHz and a variable detuning �µw. (B) Zoom on the bottom of the energy spectrum of a chain in
the topological configuration. Starting from the ground state with 6 particles (solid disk), we can (i) reach one of the other
degenerate ground states by adding a particle at the edge for zero energy cost. In addition, we can probe the bulk excitation
gap by (ii) adding a particle to, or (iii) removing a particle from, the bulk. (C) Measured occupancy of bulk (blue) and edge
sites (green and brown) showing the three expected transitions. Error bars are s.e.m.

is added at zero energy at the edge, and we reach an-
other of the four degenerate ground states, (ii) particles
are added to the bulk, which requires at least the bulk
gap in energy, while (iii) particles are removed from the
bulk, which appears as a dip at negative detuning.

PROBING THE PROTECTING SYMMETRY

We finally probe the robustness of the four-fold ground
state degeneracy to small perturbations, which respect
the protecting symmetry SB. To do so, we distort the
chain on one side by moving the rightmost site out of
the sub-lattice B, see Fig. 5A. As the edge site and its
second neighbor are not at the ‘magic angle’ anymore,
this creates a coupling J

00
/h ' 0.26 MHz between them.

This perturbation breaks the chiral symmetry protect-
ing the fermionic SSH model, and correspondingly leads
to a splitting of the single-particle edge modes. How-
ever, such a perturbation commutes with the symme-
try SB and therefore should not break the many-body
ground state degeneracy. To check these expectations, we
first repeat the spectroscopic measurement in the single-
particle regime (applying the microwave probe on an
empty chain, as shown in Fig.2A), and observe a splitting
of the edge modes, see Fig. 5B. In contrast, the spectro-
scopic measurement for the bosonic many-body ground
state (applying the probe after the adiabatic prepara-
tion reaching half-filling of the bulk, as done in Fig. 4)
indeed reveals a degenerate ground state, see Fig. 5C.
In [32], we checked that when we prepare the ground
state with a half-filled bulk, i.e., when �f lies in the re-
gion |~�f | < |J | � |J 0|, the spectroscopic measurement
reveals a symmetry protected ground state degeneracy.

The above experiment illustrates that, in contrast to a
non-interacting SPT phase, the robustness of the bosonic
many-body ground state at half-filling cannot be under-
stood at the single-particle level. To gain an intuition for
the di↵erences between the SPT phase of non-interacting
fermions and of hard-core bosons, we use the following
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Figure 5. Perturbation and robustness of the bosonic
topological phase. (A) The rightmost site is shifted up-
wards to give a finite hopping amplitude J 00 to the second
neighbor. (B,C) Probability to find a particle in the left
(green) and right (brown) edge sites when scanning the de-
tuning �µw of the microwave probe. The experiment is per-
formed either on (B) an initially empty chain to observe the
energy di↵erence between the two single-particle edge modes
caused by the perturbation J 00 or (C) on the many-body
ground state with a half-filled bulk (6 particles in a 14-site
chain) to observe the protection of the ground state degener-
acy. Solid lines are Gaussian fits from which we extract an
energy di↵erence of 0.21(1) MHz in (B) and 0.03(2) MHz in
(C).

simple picture. Considering only the three rightmost
sites (the edge and a dimer), and taking the perturba-
tive limit (J � J

0
, J

00), we first obtain the energy of
having no particle on the edge site and one delocalized
on the dimer: �J � (J 0 + J

00)2/ (2J) (the second term is
an energy correction due to virtual hopping of the par-
ticle from the bulk to the edge). On the contrary, when
there is one particle on the dimer and one on the edge, we
obtain �J � (J 0 ± J

00)2/ (2J) with an energy correction
now depending on the particle quantum statistics (+ sign
for bosons, � for fermions, due to commutation rules).
More details can be found in S3.3 of [32]. This simplified
model captures why the fermionic degeneracy is broken

Experimental setup with  
Rydberg atoms  
- single atoms in optical tweezers 
 
- assembly of arbitrary structures



Single particle properties of the SSH model

Chiral symmetry 

- unitary matrix with  
 

 
- here, we obtain 

Hamiltonian of the single particle 
SSH model for bosons 

- all atoms in a Rydberg S-state 

- bosonic excitation: Rydberg P-state 
 
- hopping by dipolar exchange  
  on a dimerized chain
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- chiral symmetry does not allow for  
  hopping within the same sub-chain 
 
- dipolar hopping naturally gives rise  
  to longer range hopping

Here, we satisfy the symmetry  
by employing the anisotropy  
of the dipole-dipole interaction



experimentally measured  
 
 
 

angular dependence 

Single particle properties of the SSH model

Chiral symmetry 

- unitary matrix with  
 

 
- here, we obtain 

Hamiltonian of the single particle 
SSH model for bosons 

- all atoms in a Rydberg S-state 

- bosonic excitation: Rydberg P-state 
 
- hopping by dipolar exchange  
  on a dimerized chain
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Figure 2. Single particle properties. (A) Single-particle spectrum for the trivial and the topological configuration probed
by microwave spectroscopy. Right: selection of single-particle wavefunctions. (B) Experimental site-resolved spectra showing
the averaged occupancy of each site as a function of �µw. The lower band bulk states are always observed, whereas the
upper band is not visible due to a suppressed coupling to the microwave probe. Edge states at zero energy appear only for
the topological configuration. The white dashed lines indicate the calculated gap. (C) Spatial distribution of the edge states,
observed (red bars) and calculated (black crosses), showing an exponential localization on the edges. The dashed line indicates
the 2 % noise level caused by preparation and detection errors. (D) Particle transfer between the two edges: a particle on the
left edge is essentially a superposition of the symmetric and anti-symmetric zero-energy modes, split in energy by Ehyb due to
the hybridization for finite chains. (E) Observation of the transfer for chains of N = 4, 6 and 8 sites after injecting a particle
on the leftmost site. (F) From the transfer frequency, we obtain the hybridization energy Ehyb (red disks) and compare it to
calculations keeping only nearest neighbor hoppings (dashed line) and including the full dipolar interaction (solid line).

configuration do we observe an additional signal localized
at the boundaries around zero energy, corresponding to
the two edge modes. The finite width of the signal is
due to microwave power broadening [32]. In Fig. 2C, we
quantitatively show the localization of edge modes at the
boundary by post-selecting experimental runs where at
most one particle was created. We observe that the par-
ticle populates significantly only the leftmost and right-
most sites, and their second neighbors, as expected from
the sub-lattice symmetry (edge states have support on
one of the two sub-chains only) and in a good agreement
with a parameter-free calculation (black crosses).

For any finite chain, the left and right edge modes hy-
bridize to form symmetric and anti-symmetric states with
an energy di↵erence Ehyb / J

0|J 0
/J |N , which breaks the

degeneracy of the edge modes but decreases exponen-
tially with the chain length N . While this remains negli-
gible compared to our experimental time scale for a long
chain of 14 sites (Ehyb ' h⇥ 20 kHz), the hybridization
is observable for smaller chains. Notably, it gives rise to
a coherent transfer of a particle between the two bound-
aries without involving the bulk modes, as sketched in
Fig. 2D. To observe this, we prepare a particle on the left-
most site using a combination of an addressing beam and

microwaves sweeps [38], and then let the system evolve
freely. We show in Fig. 2E the experimental results for
three chains of 4, 6 and 8 sites. The energy Ehyb is
determined from the frequency of transfer and exhibits
the expected exponential scaling, see Fig. 2F, in excellent
agreement with theoretical calculations including the full
hopping matrix Jij .

MANY-BODY GROUND STATE

We now turn to the study of the many-body system. In
Fig. 3B-C, we show the full energy spectrum in the trivial
and topological configurations, calculated using exact di-
agonalization, and ordered by increasing number of par-
ticles. In the trivial case, there is a single ground state
at half-filling. In contrast, the topological configuration
exhibits four degenerate ground states corresponding to
the bulk half-filled, and which are characterized by addi-
tional or missing particles mainly residing at the edges.
In order to prepare the ground state, we perform a mi-
crowave adiabatic sweep, shown in Fig. 3A, where the
final detuning �f plays the role of a chemical potential
tuning the number of particles loaded in the chain. From

Edge modes of the SSH model
Spectroscopy of the spectrum 

- microwave field coupling the S-state to 
  to the Rydberg P-state  
 
- no-momentum transfer: only couple to 
  half of the states 

- observation of zero energy states 
  localized at the edge of the system

Trivial Topological

Edge state localization

imperfections of  
the experiments

2

A

B
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D

Figure 1. Bosonic SSH model. (A) Dimerized one-dimensional lattice and the two sub-lattices A and B. The staggered
nearest neighbor hopping energies are denoted as J and J 0 with |J | > |J 0|. (B) Each lattice site hosts a Rydberg atom with
two relevant levels: 60S1/2 being the vacuum state |0i and 60P1/2 describing a bosonic particle b†i |0i. The dipolar exchange
interaction provides a hopping of the particles. (Inset in A) Angular dependence of the hopping amplitude measured between
two sites; filled (empty) disk: positive (negative) amplitude. It vanishes and changes sign at the angle ✓m ' 54.7�. The solid
line is the theoretical prediction. Error bars, denoting the standard error of the mean (s.e.m.), are smaller than the symbol
size. (C-D) Single-shot fluorescence images of the atoms assembled in the artificial structure for the topological (C) and the
trivial (D) configuration. The chain is tilted by the angle ✓m to cancel couplings between sites in the same sub-lattice.

state and an excitation gap, and a SPT phase, with a
four-fold ground state degeneracy due to edge states, and
a bulk excitation gap. Following an adiabatic preparation
of a half-filled chain, we detect the ground state degen-
eracy in the topological phase and probe the zero-energy
edge states. Furthermore, we experimentally demon-
strate the robustness of the SPT phase under a perturba-
tion respecting the protecting symmetry, and show that
this robustness cannot be explained at the single-particle
level, a feature that distinguishes our system from non-
interacting SPT phases.

SSH MODEL FOR HARD-CORE BOSONS

The SSH model is formulated on a one-dimensional
lattice with an even number of sites N and staggered
hopping of particles, see Fig. 1A. It is convenient to divide
the lattice into two sub-lattices: A = {1, 3, . . . , N � 1},
involving odd lattice sites, and B = {2, 4, . . . , N}, with
even sites. Then, a particle on site i of one sub-lattice
can hop to a site j of the other sub-lattice with a hopping
amplitude Jij (we do not restrict the system to nearest
neighbor hopping). The many-body Hamiltonian is
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Here we consider hard-core bosons and the operators b
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(bi) satisfy bosonic commutation relations on di↵erent
sites i 6= j, and additionally the hard-core constraint
(b†i )

2 = 0, as two bosons cannot occupy the same site i. In
our realization, the nearest neighbor hoppings are dom-
inant with their energies denoted as J2i,2i+1 = J and
J2i�1,2i = J

0 with |J 0| < |J |, and are su�cient to de-
scribe the qualitative behavior of the model.
At the single particle level, the spectrum of the Hamil-

tonian in Eq. (1), shown in Fig. 2A, is obtained by diag-
onalizing the coupling matrix Jij . It displays two bands
separated by a spectral gap 2(|J |� |J 0|) and, depending
on the boundaries of the chain, localized zero-energy edge
modes. There are two such modes for a chain ending with
weak links J

0 (topological configuration, Fig. 1C) and
none if the chain ends with strong links J (trivial config-
uration, Fig. 1D). The topology of the bands emerges
from the sub-lattice (or chiral) symmetry of the SSH
Hamiltonian [5, 6], which notably constrains the hopping
matrix Jij to connect only sites of di↵erent sub-lattices,
e.g., next nearest neighbor hoppings Ji,i+2 = J

00 are for-
bidden. The existence and degeneracy of edge modes
are topologically protected from any perturbation that
does not break the sub-lattice symmetry. These single-
particle properties of the coupling matrix Jij defining the
SSH model have been observed in many platforms such
as, e.g., ultracold atoms [29, 30], polaritons in array of
micropillars [21] or mechanical granular chains [31].
We now turn to the properties of the quantum many-
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Figure 1. Bosonic SSH model. (A) Dimerized one-dimensional lattice and the two sub-lattices A and B. The staggered
nearest neighbor hopping energies are denoted as J and J 0 with |J | > |J 0|. (B) Each lattice site hosts a Rydberg atom with
two relevant levels: 60S1/2 being the vacuum state |0i and 60P1/2 describing a bosonic particle b†i |0i. The dipolar exchange
interaction provides a hopping of the particles. (Inset in A) Angular dependence of the hopping amplitude measured between
two sites; filled (empty) disk: positive (negative) amplitude. It vanishes and changes sign at the angle ✓m ' 54.7�. The solid
line is the theoretical prediction. Error bars, denoting the standard error of the mean (s.e.m.), are smaller than the symbol
size. (C-D) Single-shot fluorescence images of the atoms assembled in the artificial structure for the topological (C) and the
trivial (D) configuration. The chain is tilted by the angle ✓m to cancel couplings between sites in the same sub-lattice.
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four-fold ground state degeneracy due to edge states, and
a bulk excitation gap. Following an adiabatic preparation
of a half-filled chain, we detect the ground state degen-
eracy in the topological phase and probe the zero-energy
edge states. Furthermore, we experimentally demon-
strate the robustness of the SPT phase under a perturba-
tion respecting the protecting symmetry, and show that
this robustness cannot be explained at the single-particle
level, a feature that distinguishes our system from non-
interacting SPT phases.
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our realization, the nearest neighbor hoppings are dom-
inant with their energies denoted as J2i,2i+1 = J and
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0 with |J 0| < |J |, and are su�cient to de-
scribe the qualitative behavior of the model.
At the single particle level, the spectrum of the Hamil-

tonian in Eq. (1), shown in Fig. 2A, is obtained by diag-
onalizing the coupling matrix Jij . It displays two bands
separated by a spectral gap 2(|J |� |J 0|) and, depending
on the boundaries of the chain, localized zero-energy edge
modes. There are two such modes for a chain ending with
weak links J

0 (topological configuration, Fig. 1C) and
none if the chain ends with strong links J (trivial config-
uration, Fig. 1D). The topology of the bands emerges
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Hamiltonian [5, 6], which notably constrains the hopping
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e.g., next nearest neighbor hoppings Ji,i+2 = J
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bidden. The existence and degeneracy of edge modes
are topologically protected from any perturbation that
does not break the sub-lattice symmetry. These single-
particle properties of the coupling matrix Jij defining the
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Figure 4. Probing the SPT phase degeneracy and bulk excitation gap. (A) A microwave sweep ending at �f/(2⇡) =
�1 MHz first prepares the many-body ground state with 6 particles, and we then apply for 2µs a microwave probe with a Rabi
frequency ⌦µw/(2⇡) = 0.3 MHz and a variable detuning �µw. (B) Zoom on the bottom of the energy spectrum of a chain in
the topological configuration. Starting from the ground state with 6 particles (solid disk), we can (i) reach one of the other
degenerate ground states by adding a particle at the edge for zero energy cost. In addition, we can probe the bulk excitation
gap by (ii) adding a particle to, or (iii) removing a particle from, the bulk. (C) Measured occupancy of bulk (blue) and edge
sites (green and brown) showing the three expected transitions. Error bars are s.e.m.

is added at zero energy at the edge, and we reach an-
other of the four degenerate ground states, (ii) particles
are added to the bulk, which requires at least the bulk
gap in energy, while (iii) particles are removed from the
bulk, which appears as a dip at negative detuning.

PROBING THE PROTECTING SYMMETRY

We finally probe the robustness of the four-fold ground
state degeneracy to small perturbations, which respect
the protecting symmetry SB. To do so, we distort the
chain on one side by moving the rightmost site out of
the sub-lattice B, see Fig. 5A. As the edge site and its
second neighbor are not at the ‘magic angle’ anymore,
this creates a coupling J

00
/h ' 0.26 MHz between them.

This perturbation breaks the chiral symmetry protect-
ing the fermionic SSH model, and correspondingly leads
to a splitting of the single-particle edge modes. How-
ever, such a perturbation commutes with the symme-
try SB and therefore should not break the many-body
ground state degeneracy. To check these expectations, we
first repeat the spectroscopic measurement in the single-
particle regime (applying the microwave probe on an
empty chain, as shown in Fig.2A), and observe a splitting
of the edge modes, see Fig. 5B. In contrast, the spectro-
scopic measurement for the bosonic many-body ground
state (applying the probe after the adiabatic prepara-
tion reaching half-filling of the bulk, as done in Fig. 4)
indeed reveals a degenerate ground state, see Fig. 5C.
In [32], we checked that when we prepare the ground
state with a half-filled bulk, i.e., when �f lies in the re-
gion |~�f | < |J | � |J 0|, the spectroscopic measurement
reveals a symmetry protected ground state degeneracy.

The above experiment illustrates that, in contrast to a
non-interacting SPT phase, the robustness of the bosonic
many-body ground state at half-filling cannot be under-
stood at the single-particle level. To gain an intuition for
the di↵erences between the SPT phase of non-interacting
fermions and of hard-core bosons, we use the following

�1 0 1

Probe �µw/(2⇡) (MHz)

0

0.5

O
cc
u
p
an

cy

�1 0 1

Probe �µw/(2⇡) (MHz)

Single particle Many body

A

B C

Figure 5. Perturbation and robustness of the bosonic
topological phase. (A) The rightmost site is shifted up-
wards to give a finite hopping amplitude J 00 to the second
neighbor. (B,C) Probability to find a particle in the left
(green) and right (brown) edge sites when scanning the de-
tuning �µw of the microwave probe. The experiment is per-
formed either on (B) an initially empty chain to observe the
energy di↵erence between the two single-particle edge modes
caused by the perturbation J 00 or (C) on the many-body
ground state with a half-filled bulk (6 particles in a 14-site
chain) to observe the protection of the ground state degener-
acy. Solid lines are Gaussian fits from which we extract an
energy di↵erence of 0.21(1) MHz in (B) and 0.03(2) MHz in
(C).

simple picture. Considering only the three rightmost
sites (the edge and a dimer), and taking the perturba-
tive limit (J � J

0
, J

00), we first obtain the energy of
having no particle on the edge site and one delocalized
on the dimer: �J � (J 0 + J

00)2/ (2J) (the second term is
an energy correction due to virtual hopping of the par-
ticle from the bulk to the edge). On the contrary, when
there is one particle on the dimer and one on the edge, we
obtain �J � (J 0 ± J

00)2/ (2J) with an energy correction
now depending on the particle quantum statistics (+ sign
for bosons, � for fermions, due to commutation rules).
More details can be found in S3.3 of [32]. This simplified
model captures why the fermionic degeneracy is broken
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Figure 1. Bosonic SSH model. (A) Dimerized one-dimensional lattice and the two sub-lattices A and B. The staggered
nearest neighbor hopping energies are denoted as J and J 0 with |J | > |J 0|. (B) Each lattice site hosts a Rydberg atom with
two relevant levels: 60S1/2 being the vacuum state |0i and 60P1/2 describing a bosonic particle b†i |0i. The dipolar exchange
interaction provides a hopping of the particles. (Inset in A) Angular dependence of the hopping amplitude measured between
two sites; filled (empty) disk: positive (negative) amplitude. It vanishes and changes sign at the angle ✓m ' 54.7�. The solid
line is the theoretical prediction. Error bars, denoting the standard error of the mean (s.e.m.), are smaller than the symbol
size. (C-D) Single-shot fluorescence images of the atoms assembled in the artificial structure for the topological (C) and the
trivial (D) configuration. The chain is tilted by the angle ✓m to cancel couplings between sites in the same sub-lattice.

state and an excitation gap, and a SPT phase, with a
four-fold ground state degeneracy due to edge states, and
a bulk excitation gap. Following an adiabatic preparation
of a half-filled chain, we detect the ground state degen-
eracy in the topological phase and probe the zero-energy
edge states. Furthermore, we experimentally demon-
strate the robustness of the SPT phase under a perturba-
tion respecting the protecting symmetry, and show that
this robustness cannot be explained at the single-particle
level, a feature that distinguishes our system from non-
interacting SPT phases.

SSH MODEL FOR HARD-CORE BOSONS

The SSH model is formulated on a one-dimensional
lattice with an even number of sites N and staggered
hopping of particles, see Fig. 1A. It is convenient to divide
the lattice into two sub-lattices: A = {1, 3, . . . , N � 1},
involving odd lattice sites, and B = {2, 4, . . . , N}, with
even sites. Then, a particle on site i of one sub-lattice
can hop to a site j of the other sub-lattice with a hopping
amplitude Jij (we do not restrict the system to nearest
neighbor hopping). The many-body Hamiltonian is

H = �
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with b
†
i (bi) the creation (annihilation) operator of a

particle on site i. In the original formulation of the

SSH model, the particles are non-interacting fermions.
Here we consider hard-core bosons and the operators b

†
i

(bi) satisfy bosonic commutation relations on di↵erent
sites i 6= j, and additionally the hard-core constraint
(b†i )

2 = 0, as two bosons cannot occupy the same site i. In
our realization, the nearest neighbor hoppings are dom-
inant with their energies denoted as J2i,2i+1 = J and
J2i�1,2i = J

0 with |J 0| < |J |, and are su�cient to de-
scribe the qualitative behavior of the model.
At the single particle level, the spectrum of the Hamil-

tonian in Eq. (1), shown in Fig. 2A, is obtained by diag-
onalizing the coupling matrix Jij . It displays two bands
separated by a spectral gap 2(|J |� |J 0|) and, depending
on the boundaries of the chain, localized zero-energy edge
modes. There are two such modes for a chain ending with
weak links J

0 (topological configuration, Fig. 1C) and
none if the chain ends with strong links J (trivial config-
uration, Fig. 1D). The topology of the bands emerges
from the sub-lattice (or chiral) symmetry of the SSH
Hamiltonian [5, 6], which notably constrains the hopping
matrix Jij to connect only sites of di↵erent sub-lattices,
e.g., next nearest neighbor hoppings Ji,i+2 = J

00 are for-
bidden. The existence and degeneracy of edge modes
are topologically protected from any perturbation that
does not break the sub-lattice symmetry. These single-
particle properties of the coupling matrix Jij defining the
SSH model have been observed in many platforms such
as, e.g., ultracold atoms [29, 30], polaritons in array of
micropillars [21] or mechanical granular chains [31].
We now turn to the properties of the quantum many-
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nearest neighbor hopping energies are denoted as J and J 0 with |J | > |J 0|. (B) Each lattice site hosts a Rydberg atom with
two relevant levels: 60S1/2 being the vacuum state |0i and 60P1/2 describing a bosonic particle b†i |0i. The dipolar exchange
interaction provides a hopping of the particles. (Inset in A) Angular dependence of the hopping amplitude measured between
two sites; filled (empty) disk: positive (negative) amplitude. It vanishes and changes sign at the angle ✓m ' 54.7�. The solid
line is the theoretical prediction. Error bars, denoting the standard error of the mean (s.e.m.), are smaller than the symbol
size. (C-D) Single-shot fluorescence images of the atoms assembled in the artificial structure for the topological (C) and the
trivial (D) configuration. The chain is tilted by the angle ✓m to cancel couplings between sites in the same sub-lattice.

state and an excitation gap, and a SPT phase, with a
four-fold ground state degeneracy due to edge states, and
a bulk excitation gap. Following an adiabatic preparation
of a half-filled chain, we detect the ground state degen-
eracy in the topological phase and probe the zero-energy
edge states. Furthermore, we experimentally demon-
strate the robustness of the SPT phase under a perturba-
tion respecting the protecting symmetry, and show that
this robustness cannot be explained at the single-particle
level, a feature that distinguishes our system from non-
interacting SPT phases.

SSH MODEL FOR HARD-CORE BOSONS

The SSH model is formulated on a one-dimensional
lattice with an even number of sites N and staggered
hopping of particles, see Fig. 1A. It is convenient to divide
the lattice into two sub-lattices: A = {1, 3, . . . , N � 1},
involving odd lattice sites, and B = {2, 4, . . . , N}, with
even sites. Then, a particle on site i of one sub-lattice
can hop to a site j of the other sub-lattice with a hopping
amplitude Jij (we do not restrict the system to nearest
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2 = 0, as two bosons cannot occupy the same site i. In
our realization, the nearest neighbor hoppings are dom-
inant with their energies denoted as J2i,2i+1 = J and
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0 with |J 0| < |J |, and are su�cient to de-
scribe the qualitative behavior of the model.
At the single particle level, the spectrum of the Hamil-

tonian in Eq. (1), shown in Fig. 2A, is obtained by diag-
onalizing the coupling matrix Jij . It displays two bands
separated by a spectral gap 2(|J |� |J 0|) and, depending
on the boundaries of the chain, localized zero-energy edge
modes. There are two such modes for a chain ending with
weak links J

0 (topological configuration, Fig. 1C) and
none if the chain ends with strong links J (trivial config-
uration, Fig. 1D). The topology of the bands emerges
from the sub-lattice (or chiral) symmetry of the SSH
Hamiltonian [5, 6], which notably constrains the hopping
matrix Jij to connect only sites of di↵erent sub-lattices,
e.g., next nearest neighbor hoppings Ji,i+2 = J

00 are for-
bidden. The existence and degeneracy of edge modes
are topologically protected from any perturbation that
does not break the sub-lattice symmetry. These single-
particle properties of the coupling matrix Jij defining the
SSH model have been observed in many platforms such
as, e.g., ultracold atoms [29, 30], polaritons in array of
micropillars [21] or mechanical granular chains [31].
We now turn to the properties of the quantum many-
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Figure 3. Preparing the many-body phase at half-filling. (A) Microwave sweep with time-varying Rabi frequency
⌦µw and detuning �µw; the latter ends at �f . (B,C) Energy spectrum of the many-body system in the trivial (top) and
the topological (bottom) configuration for di↵erent particle numbers. The trivial chain exhibits a single gapped ground state
with 7 particles, while the topological configuration exhibits a four-fold degeneracy involving 6, 7 (two-fold degenerate), and
8 particles. Starting from the empty chain, the microwave adiabatic sweep loads hard-core bosons in the lattice and prepares
the lowest energy states. (D,E) We measure the occupancy of bulk (blue) and edge sites (green and brown) as a function of
the final detuning �f . For a sweep ending in the single-particle gap (dashed lines), the bulk of the chain is half-filled. Bosons
are loaded in the edge sites of the topological configuration when �f > 0. The error bars represent the standard errors of the
mean (s.e.m).

a theoretical analysis simulating the full time-evolution,
we expect that our ramping procedure ending at a final
detuning |~�f | < |J | � |J 0| prepares the ground state
with high fidelity [32].

We present in Fig. 3D-E the dependence of the local
density of particles on �f : the bulk sites occupancy (blue
curves) exhibits a characteristic plateau at half-filling
within the single particle gap. Especially, the fluctua-
tions of the number of particles in the bulk are strongly
reduced with a probability of 48 % to find exactly 6 parti-
cles on the 12 bulk sites (mainly decreased from 100 % by
detection errors [32]). While the local bulk properties are
independent of the topology of the setup, the situation is
drastically di↵erent for the edge occupancy: in the triv-
ial configuration, the edge sites behave as the bulk sites,
whereas for the topological chain the boundaries remain
depleted for �f < 0 and exhibit a sharp transition to full
occupancy for �f > 0. This behavior is consistent with
the expected ground state degeneracy.

We gain more insight about the many-body state by
analyzing the correlations between particles, that we can
measure as our detection scheme provides the full site-
resolved particle distribution. In the strongly dimer-
ized regime |J | � |J 0|, we expect the ⇠ N/2 particles
in the bulk to be highly correlated as they can mini-
mize their energy by each delocalizing on a dimer (two
sites connected by a strong link J). The picture re-
mains valid even in our regime where |J | ' 2.6|J 0|.
We measure a large and negative density-density cor-
relation C

z(2i, 2i + 1) = hZ2iZ2i+1i ' �0.67(1) with

Zi = 1 � 2b†i bi, corresponding to a suppressed probabil-
ity to find two particles on the same dimer. We also
access the o↵-diagonal correlations, C

x(i, j) = hXiXji
with Xi = bi + b

†
i measuring the coherence between two

sites i and j, by applying a strong microwave pulse be-
fore the detection which rotates the local measurement
basis around the Bloch sphere. We obtain C

x(2i, 2i+1) '
+0.48(2) indicating that a particle is coherently and sym-
metrically delocalized on two sites forming a dimer. Fur-
thermore, our detection scheme allows us to determine
string order parameters, which have emerged as an indi-
cator of topological states [39, 40]:

C
z
string = �

D
Z2 e

i⇡
2

PN�2
k=3 Zk ZN�1

E
(3)

and in analogy for C
x
string. Indeed, we measure a fi-

nite string order in the topological phase with C
z
string =

0.11(2) and C
x
string = 0.05(2), while in the trivial phase

they are consistent with zero, e.g., Cz
string = �0.02(3). All

measured correlators are in good agreement with simu-
lations [32].
We now demonstrate the degeneracy of the many-body

ground state in the topological phase and the bulk exci-
tation gap. We first prepare the many-body ground state
with the bulk at half-filling but empty edge states by an
adiabatic sweep ending at �f/(2⇡) = �1 MHz. We then
apply a weak microwave probe at various detunings �µw

(see Fig. 4A) and observe when particles are created or
annihilated in order to probe the excitation spectrum of
the many-body ground state. Figure 4B-C shows the
three expected and measured transitions: (i) a particle

4

A

B

C

(M
H

z)

1

0

2

3 5

0

-5

(M
H

z)

0.0

0.5

1.0

1 3
Time (µs)

0 2
0.0

0.5

1.0

0

3

6

9

4

P
n

P
n

0.0

0.5

1.0

1 3
Time (µs)

0 2

A

B

0.0

0.5

1.0

0

3

6

9
N

P
N

P
N

4

Particle num
ber n 

Figure S5. (A) Microwave sweep ending at �f/2fi = +1 MHz,
used to prepare the ground state of the topological setup with
filled edge states (here, for a chain of 10 sites). (B) Numeri-
cally calculated evolution of the number of excitations during
the sweep. The probability Pn for finding n excitations within
the system is depicted. As expected, there is mainly 6 par-
ticles at the end of the sweep. The dashed curve shows the
overlap with the target state with a final value of 0.963. (C)
Evolution of the number of excitations, measured experimen-
tally (disks) and calculated (lines) including preparation and
detection errors Á = 0.06 and ÁÕ = 0.07, slightly higher for
this dataset.

S1.5. Correlations and string orders

In the main text, we measured the correlations C
z,x

and string order parameters C
z,x
string

of the many-body
ground state. They were obtained for two observables
Zi = 1 ≠ 2b

†
i bi and Xi = bi + b

†
i . Here, we first explain

how we measured them and then compare the measured
C

z,x and C
z,x
string

to numerical simulations.
Figure S6A shows how we perform the experiments.

After a microwave sweep preparing the half-filled ground
state, we apply a strong microwave pulse that rotates the
measurement basis along the X ≠Z plane, as represented
in the Bloch sphere picture in Fig. S6B. We choose a large
Rabi frequency �µw/(2fi) = 14 MHz, much larger than
the interaction energies, to minimize their e�ects dur-
ing the rotation. The measured correlations between two
sites forming a dimer (connected by a strong link J) is
shown in Fig. S6C as a function of the pulse area. A
pulse lasting · ƒ 17 ns rotates the measurement basis
from Z to X. For completeness, we show the full correla-
tion maps in Fig. S6D-E. As expected (see the discussion
in the main text), we recognize strong correlations for
two sites connected by a strong link, both for the Z and
X observables. Let us note that we observe inter-dimer
correlations that are stronger when measuring along the
X axis, which is also predicted in numerical calculations.

Figure S6. (A) A microwave sweep first prepares the half-
filled ground state of a topological chain of 14 sites. Before
shining the read-out pulse, we apply a strong microwave field
�µw/(2fi) ƒ 14 MHz during a time · to rotate the measure-
ment basis, as shown in the Bloch sphere representation (B).
(C) Measured intra-dimer correlator as a function of the pulse
area �µw· . (D,E) Full correlation maps for two sites i and j
in the chain obtained when measuring the Z (D, �µw· = 0)
and X (E, �µw· = fi/2) observables.

Cz Cx Cz
string Cx

string

Th. (no errors) -0.96 0.98 0.78 0.88
Full simulation -0.69(1) 0.68(2) 0.11(2) 0.10(2)
Experiments -0.67(1) 0.48(2) 0.11(2) 0.05(2)

Table S1. Theoretical predictions (with and without experi-
mental imperfections) and experimental measurements of the
intra-dimer correlators Cz and Cx, as well as of the string
order parameters Cz

string and Cx
string.

Table S1 compares the measured correlators to numer-
ical simulations. The agreement is excellent for measure-
ments along the Z axis, whereas C

x and C
x
string

are below
the predicted values, suggesting that the rotation of the
measurement basis su�ers from experimental imperfec-
tions.

with experimental  imperfections
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(J 0 = 0) and thus write:

 MB '
Y

1i6

(b̂†2i + b̂
†
2i+1)|vaci

' |0iL|0iR ⌦1i6 (|10ii + |01ii). (2)

The finite inter-dimer hopping J
0 leads to additional

anti-correlations between two neighbor sites in di↵erent
dimers, not present in the simplified representation of
Eq. 2, but measured in our experiment at a level of 4%.

To check the coherent delocalization of particles in
the dimers, we perform a global rotation of the mea-
surement basis by applying a strong microwave pulse
(⌦µw/(2⇡) = 14.3 MHz). The pulse area ✓ and the phase
� of the microwave pulse relative to the one used for the
sweep can be varied to explore the Bloch sphere. When
varying ✓, we observe an oscillation of the intra-dimer
correlator, which reach a maximum positive value for
✓ = ⇡/2 indicating that we now find either zero or two
particles in each dimer rather than a single one. We then
check that this feature remains constant in the X-Y plane
by keeping ✓ = ⇡/2 but varying � (inset of Fig. 5E).

Finally, we check the robustness of the many-body
topological phase to perturbations. We distort the chain
on one side by moving the rightmost site out of the
sub-lattice A. As the edge site and its second neigh-
bor are not at the ‘magic angle’ anymore, it creates a
coupling J

00
/~ ' 0.2 MHz between them. This per-

turbation breaks the chiral symmetry responsible of the
edge states degeneracy in the single-particle case, as seen
on the spectrum obtained by sending a weak microwave
probe on an empty chain (Fig.6B, left panel): the right-
most site (brown curve) is populated at a higher energy
than the lefmost site (green). Remarkably, the degen-
eracy is restored when performing the same experiment
starting from the many-body state  MB (Fig.6B, right
panel): the bulk is half-filled with particles (blue curve)
and the two edge sites are excited at zero energy. The ex-
cess probability at higher energy for the rightmost site is
due to imperfect preparation of the chain and discussed
in the supplemental material. The lower plot in Fig. 6B
shows the di↵erence in energy ER �EL between the two
edge states when fitting their excitation probability by a
Gaussian curve.

DISCUSSION

This robustness is an important feature of our bosonic
SPT phase, which is absent in the single-particle and in
the non-interacting fermionic version of the SSH model.
Fundamentally, it is explained by the commutation of
the bosonic symmetry SB with the perturbation Hamil-
tonian, while it is not the case for the fermionic sym-
metry SF . It is even more remarkable considering that,
in one dimension, hard-core bosons and non-interacting
fermions are related to one another by the Jordan-Wigner
transformation. It is the fact that this transformation is
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Figure 5. Preparing the many-body phase at half-
filling. (A) Starting from an empty chain, a microwave adi-
abatic sweep loads hard-core bosons in the lattice. (B) We
first scan the final detuning �f and measure the excitation
probability P1 of bulk sites (blue) and edge sites (green and
brown). For a sweep ending in the gap (dashed line), the
bulk of the chain is half-filled. Bosons are loaded in the edge
sites when �f > 0. (C) Histogram of the particle number
N̂exc when ending the sweep at �f = �1 MHz. It exhibits
squeezing around 6, half the number of sites in the bulk. (D)
The correlation map shows that there is a strong suppression
of the probability to find two particles in the same dimer.
This anti-correlation extends also to two neighbor sites in dif-
ferent dimers, but is much weaker due to the small value of
J 0/J . (E) Using a strong resonant microwave pulse after the
sweep, we rotate the measurement basis around the Bloch
sphere and then observe the presence of a particle. We ob-
serve a contrasted oscillation of the intra-dimer correlation
in the Y � Z plane, while it remains constant in the X � Y
plane (inset). (C-E) indicates that the many-body state can
be approximated by an assembly of one particle per dimer in a
coherent superposition |10ii+ |01ii, which is the true ground-
state for J 0 = 0. The finite inter-dimer coupling gives rise to
fluctuations from this simple approximation as indicated by
the presence of correlations between dimers.

highly non-local, which makes the two symmetries fun-
damentally di↵erent.

On the theoretical side, the chiral symmetry gives rise
to an anti-unitary operator SF [43], which commutes
with the Hamiltonian of the fermionic system. Using
the Jordan-Wigner transformation, mapping in one di-
mension non-interacting fermions to hard-core bosons,
we can write, as described in the supplemental materials,
its bosonic analog SB which is the protecting symmetry
of the many-body topological phase of the Hamiltonian
Ĥ that we realize experimentally.

ground state  
degeneracy

�fdetuning

bulk occupation: slow drifts  
well-understood by defects in preparation

edge site: finite  
probability due to hopping
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Figure 6. Perturbation and robustness of the bosonic
topological phase. (A) The rightmost site is shifted up-
wards to give rise to a finite hopping amplitude J 00 to the
second neighbor. (B,C) Probability P1 to find a particle in
the left (green) and right (brown) edge sites when scanning
the detuning �rmµw of the microwave probe. The experiment
is performed either on an empty chain (B) or on the many-
body state  MB (C). Solid lines are Gaussian fits from which
we obtain the edge state energy. (D) The energy di↵erence
illustrates the robustness of the many-body topological phase
to the perturbation, in constrast to the single-particle case.

(should go to the outlook) Furthermore, the symmetry
SB also allows for complex hoppings of the bosons, as

well as interactions Vij = (2b†i bi � 1)(2b†jbj � 1). Adding
such terms allows us to smoothly connect our experi-
mentally realized SPT phase without closing the gap to
the AKLT model (cite) and the Haldane spin-1 phase
(cite).

OUTLOOK

Our results demonstrates that many-body topologi-
cal phase of matters can be explored using the resonant
dipole exchange interaction between Rydberg atoms.
The preparation fidelity of the atoms in the Rydberg
states can be readily improved by combining our STI-
RAP preparation technique with recent developments in
coherent control of ground-Rydberg qubits [47]. The ex-
aggerated response of Rydberg states to microwave fields
gave a large toolbox for characterizing many-body states
with global rotations of the measurement basis, a feat
di�cult to realize in lattice experiments with ultracold
atoms [48], and it can be completed with our address-
ing laser beam performing individual rotation on the z-
axis [46].
We believe that the combination of flexible geometries

o↵ered by the atom assembler technique, and strong co-
herent interactions between Rydberg atoms opens the
way to studies of various intriguing phase of matters.
This work could be extended to realize topological phase
in higher dimensions [49] or to study, e.g., the XXZ spin-
1/2 model by also considering van der Waals interactions
between Rydberg states which was made negligible on
purpose in the present work.
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Figure 4. Probing the SPT phase degeneracy and bulk excitation gap. (A) A microwave sweep ending at �f/(2⇡) =
�1 MHz first prepares the many-body ground state with 6 particles, and we then apply for 2µs a microwave probe with a Rabi
frequency ⌦µw/(2⇡) = 0.3 MHz and a variable detuning �µw. (B) Zoom on the bottom of the energy spectrum of a chain in
the topological configuration. Starting from the ground state with 6 particles (solid disk), we can (i) reach one of the other
degenerate ground states by adding a particle at the edge for zero energy cost. In addition, we can probe the bulk excitation
gap by (ii) adding a particle to, or (iii) removing a particle from, the bulk. (C) Measured occupancy of bulk (blue) and edge
sites (green and brown) showing the three expected transitions. Error bars are s.e.m.

is added at zero energy at the edge, and we reach an-
other of the four degenerate ground states, (ii) particles
are added to the bulk, which requires at least the bulk
gap in energy, while (iii) particles are removed from the
bulk, which appears as a dip at negative detuning.

PROBING THE PROTECTING SYMMETRY

We finally probe the robustness of the four-fold ground
state degeneracy to small perturbations, which respect
the protecting symmetry SB. To do so, we distort the
chain on one side by moving the rightmost site out of
the sub-lattice B, see Fig. 5A. As the edge site and its
second neighbor are not at the ‘magic angle’ anymore,
this creates a coupling J

00
/h ' 0.26 MHz between them.

This perturbation breaks the chiral symmetry protect-
ing the fermionic SSH model, and correspondingly leads
to a splitting of the single-particle edge modes. How-
ever, such a perturbation commutes with the symme-
try SB and therefore should not break the many-body
ground state degeneracy. To check these expectations, we
first repeat the spectroscopic measurement in the single-
particle regime (applying the microwave probe on an
empty chain, as shown in Fig.2A), and observe a splitting
of the edge modes, see Fig. 5B. In contrast, the spectro-
scopic measurement for the bosonic many-body ground
state (applying the probe after the adiabatic prepara-
tion reaching half-filling of the bulk, as done in Fig. 4)
indeed reveals a degenerate ground state, see Fig. 5C.
In [32], we checked that when we prepare the ground
state with a half-filled bulk, i.e., when �f lies in the re-
gion |~�f | < |J | � |J 0|, the spectroscopic measurement
reveals a symmetry protected ground state degeneracy.

The above experiment illustrates that, in contrast to a
non-interacting SPT phase, the robustness of the bosonic
many-body ground state at half-filling cannot be under-
stood at the single-particle level. To gain an intuition for
the di↵erences between the SPT phase of non-interacting
fermions and of hard-core bosons, we use the following
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Figure 5. Perturbation and robustness of the bosonic
topological phase. (A) The rightmost site is shifted up-
wards to give a finite hopping amplitude J 00 to the second
neighbor. (B,C) Probability to find a particle in the left
(green) and right (brown) edge sites when scanning the de-
tuning �µw of the microwave probe. The experiment is per-
formed either on (B) an initially empty chain to observe the
energy di↵erence between the two single-particle edge modes
caused by the perturbation J 00 or (C) on the many-body
ground state with a half-filled bulk (6 particles in a 14-site
chain) to observe the protection of the ground state degener-
acy. Solid lines are Gaussian fits from which we extract an
energy di↵erence of 0.21(1) MHz in (B) and 0.03(2) MHz in
(C).

simple picture. Considering only the three rightmost
sites (the edge and a dimer), and taking the perturba-
tive limit (J � J

0
, J

00), we first obtain the energy of
having no particle on the edge site and one delocalized
on the dimer: �J � (J 0 + J

00)2/ (2J) (the second term is
an energy correction due to virtual hopping of the par-
ticle from the bulk to the edge). On the contrary, when
there is one particle on the dimer and one on the edge, we
obtain �J � (J 0 ± J

00)2/ (2J) with an energy correction
now depending on the particle quantum statistics (+ sign
for bosons, � for fermions, due to commutation rules).
More details can be found in S3.3 of [32]. This simplified
model captures why the fermionic degeneracy is broken
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Figure S5. (A) Microwave sweep ending at �f/2fi = +1 MHz,
used to prepare the ground state of the topological setup with
filled edge states (here, for a chain of 10 sites). (B) Numeri-
cally calculated evolution of the number of excitations during
the sweep. The probability Pn for finding n excitations within
the system is depicted. As expected, there is mainly 6 par-
ticles at the end of the sweep. The dashed curve shows the
overlap with the target state with a final value of 0.963. (C)
Evolution of the number of excitations, measured experimen-
tally (disks) and calculated (lines) including preparation and
detection errors Á = 0.06 and ÁÕ = 0.07, slightly higher for
this dataset.

S1.5. Correlations and string orders

In the main text, we measured the correlations C
z,x

and string order parameters C
z,x
string

of the many-body
ground state. They were obtained for two observables
Zi = 1 ≠ 2b

†
i bi and Xi = bi + b

†
i . Here, we first explain

how we measured them and then compare the measured
C

z,x and C
z,x
string

to numerical simulations.
Figure S6A shows how we perform the experiments.

After a microwave sweep preparing the half-filled ground
state, we apply a strong microwave pulse that rotates the
measurement basis along the X ≠Z plane, as represented
in the Bloch sphere picture in Fig. S6B. We choose a large
Rabi frequency �µw/(2fi) = 14 MHz, much larger than
the interaction energies, to minimize their e�ects dur-
ing the rotation. The measured correlations between two
sites forming a dimer (connected by a strong link J) is
shown in Fig. S6C as a function of the pulse area. A
pulse lasting · ƒ 17 ns rotates the measurement basis
from Z to X. For completeness, we show the full correla-
tion maps in Fig. S6D-E. As expected (see the discussion
in the main text), we recognize strong correlations for
two sites connected by a strong link, both for the Z and
X observables. Let us note that we observe inter-dimer
correlations that are stronger when measuring along the
X axis, which is also predicted in numerical calculations.

Figure S6. (A) A microwave sweep first prepares the half-
filled ground state of a topological chain of 14 sites. Before
shining the read-out pulse, we apply a strong microwave field
�µw/(2fi) ƒ 14 MHz during a time · to rotate the measure-
ment basis, as shown in the Bloch sphere representation (B).
(C) Measured intra-dimer correlator as a function of the pulse
area �µw· . (D,E) Full correlation maps for two sites i and j
in the chain obtained when measuring the Z (D, �µw· = 0)
and X (E, �µw· = fi/2) observables.

Cz Cx Cz
string Cx

string

Th. (no errors) -0.96 0.98 0.78 0.88
Full simulation -0.69(1) 0.68(2) 0.11(2) 0.10(2)
Experiments -0.67(1) 0.48(2) 0.11(2) 0.05(2)

Table S1. Theoretical predictions (with and without experi-
mental imperfections) and experimental measurements of the
intra-dimer correlators Cz and Cx, as well as of the string
order parameters Cz

string and Cx
string.

Table S1 compares the measured correlators to numer-
ical simulations. The agreement is excellent for measure-
ments along the Z axis, whereas C

x and C
x
string

are below
the predicted values, suggesting that the rotation of the
measurement basis su�ers from experimental imperfec-
tions.

5

Figure 3. Preparing the many-body phase at half-filling. (A) Microwave sweep with time-varying Rabi frequency
⌦µw and detuning �µw; the latter ends at �f . (B,C) Energy spectrum of the many-body system in the trivial (top) and
the topological (bottom) configuration for di↵erent particle numbers. The trivial chain exhibits a single gapped ground state
with 7 particles, while the topological configuration exhibits a four-fold degeneracy involving 6, 7 (two-fold degenerate), and
8 particles. Starting from the empty chain, the microwave adiabatic sweep loads hard-core bosons in the lattice and prepares
the lowest energy states. (D,E) We measure the occupancy of bulk (blue) and edge sites (green and brown) as a function of
the final detuning �f . For a sweep ending in the single-particle gap (dashed lines), the bulk of the chain is half-filled. Bosons
are loaded in the edge sites of the topological configuration when �f > 0. The error bars represent the standard errors of the
mean (s.e.m).

a theoretical analysis simulating the full time-evolution,
we expect that our ramping procedure ending at a final
detuning |~�f | < |J | � |J 0| prepares the ground state
with high fidelity [32].

We present in Fig. 3D-E the dependence of the local
density of particles on �f : the bulk sites occupancy (blue
curves) exhibits a characteristic plateau at half-filling
within the single particle gap. Especially, the fluctua-
tions of the number of particles in the bulk are strongly
reduced with a probability of 48 % to find exactly 6 parti-
cles on the 12 bulk sites (mainly decreased from 100 % by
detection errors [32]). While the local bulk properties are
independent of the topology of the setup, the situation is
drastically di↵erent for the edge occupancy: in the triv-
ial configuration, the edge sites behave as the bulk sites,
whereas for the topological chain the boundaries remain
depleted for �f < 0 and exhibit a sharp transition to full
occupancy for �f > 0. This behavior is consistent with
the expected ground state degeneracy.

We gain more insight about the many-body state by
analyzing the correlations between particles, that we can
measure as our detection scheme provides the full site-
resolved particle distribution. In the strongly dimer-
ized regime |J | � |J 0|, we expect the ⇠ N/2 particles
in the bulk to be highly correlated as they can mini-
mize their energy by each delocalizing on a dimer (two
sites connected by a strong link J). The picture re-
mains valid even in our regime where |J | ' 2.6|J 0|.
We measure a large and negative density-density cor-
relation C

z(2i, 2i + 1) = hZ2iZ2i+1i ' �0.67(1) with

Zi = 1 � 2b†i bi, corresponding to a suppressed probabil-
ity to find two particles on the same dimer. We also
access the o↵-diagonal correlations, C

x(i, j) = hXiXji
with Xi = bi + b

†
i measuring the coherence between two

sites i and j, by applying a strong microwave pulse be-
fore the detection which rotates the local measurement
basis around the Bloch sphere. We obtain C

x(2i, 2i+1) '
+0.48(2) indicating that a particle is coherently and sym-
metrically delocalized on two sites forming a dimer. Fur-
thermore, our detection scheme allows us to determine
string order parameters, which have emerged as an indi-
cator of topological states [39, 40]:

C
z
string = �

D
Z2 e

i⇡
2

PN�2
k=3 Zk ZN�1

E
(3)

and in analogy for C
x
string. Indeed, we measure a fi-

nite string order in the topological phase with C
z
string =

0.11(2) and C
x
string = 0.05(2), while in the trivial phase

they are consistent with zero, e.g., Cz
string = �0.02(3). All

measured correlators are in good agreement with simu-
lations [32].
We now demonstrate the degeneracy of the many-body

ground state in the topological phase and the bulk exci-
tation gap. We first prepare the many-body ground state
with the bulk at half-filling but empty edge states by an
adiabatic sweep ending at �f/(2⇡) = �1 MHz. We then
apply a weak microwave probe at various detunings �µw

(see Fig. 4A) and observe when particles are created or
annihilated in order to probe the excitation spectrum of
the many-body ground state. Figure 4B-C shows the
three expected and measured transitions: (i) a particle

Zi = 1� b†i bi
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Figure 6. Perturbation and robustness of the bosonic
topological phase. (A) The rightmost site is shifted up-
wards to give rise to a finite hopping amplitude J 00 to the
second neighbor. (B,C) Probability P1 to find a particle in
the left (green) and right (brown) edge sites when scanning
the detuning �rmµw of the microwave probe. The experiment
is performed either on an empty chain (B) or on the many-
body state  MB (C). Solid lines are Gaussian fits from which
we obtain the edge state energy. (D) The energy di↵erence
illustrates the robustness of the many-body topological phase
to the perturbation, in constrast to the single-particle case.

(should go to the outlook) Furthermore, the symmetry
SB also allows for complex hoppings of the bosons, as

well as interactions Vij = (2b†i bi � 1)(2b†jbj � 1). Adding
such terms allows us to smoothly connect our experi-
mentally realized SPT phase without closing the gap to
the AKLT model (cite) and the Haldane spin-1 phase
(cite).

OUTLOOK

Our results demonstrates that many-body topologi-
cal phase of matters can be explored using the resonant
dipole exchange interaction between Rydberg atoms.
The preparation fidelity of the atoms in the Rydberg
states can be readily improved by combining our STI-
RAP preparation technique with recent developments in
coherent control of ground-Rydberg qubits [47]. The ex-
aggerated response of Rydberg states to microwave fields
gave a large toolbox for characterizing many-body states
with global rotations of the measurement basis, a feat
di�cult to realize in lattice experiments with ultracold
atoms [48], and it can be completed with our address-
ing laser beam performing individual rotation on the z-
axis [46].
We believe that the combination of flexible geometries

o↵ered by the atom assembler technique, and strong co-
herent interactions between Rydberg atoms opens the
way to studies of various intriguing phase of matters.
This work could be extended to realize topological phase
in higher dimensions [49] or to study, e.g., the XXZ spin-
1/2 model by also considering van der Waals interactions
between Rydberg states which was made negligible on
purpose in the present work.
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Figure 6. Perturbation and robustness of the bosonic
topological phase. (A) The rightmost site is shifted up-
wards to give rise to a finite hopping amplitude J 00 to the
second neighbor. (B,C) Probability P1 to find a particle in
the left (green) and right (brown) edge sites when scanning
the detuning �rmµw of the microwave probe. The experiment
is performed either on an empty chain (B) or on the many-
body state  MB (C). Solid lines are Gaussian fits from which
we obtain the edge state energy. (D) The energy di↵erence
illustrates the robustness of the many-body topological phase
to the perturbation, in constrast to the single-particle case.

(should go to the outlook) Furthermore, the symmetry
SB also allows for complex hoppings of the bosons, as

well as interactions Vij = (2b†i bi � 1)(2b†jbj � 1). Adding
such terms allows us to smoothly connect our experi-
mentally realized SPT phase without closing the gap to
the AKLT model (cite) and the Haldane spin-1 phase
(cite).

OUTLOOK

Our results demonstrates that many-body topologi-
cal phase of matters can be explored using the resonant
dipole exchange interaction between Rydberg atoms.
The preparation fidelity of the atoms in the Rydberg
states can be readily improved by combining our STI-
RAP preparation technique with recent developments in
coherent control of ground-Rydberg qubits [47]. The ex-
aggerated response of Rydberg states to microwave fields
gave a large toolbox for characterizing many-body states
with global rotations of the measurement basis, a feat
di�cult to realize in lattice experiments with ultracold
atoms [48], and it can be completed with our address-
ing laser beam performing individual rotation on the z-
axis [46].
We believe that the combination of flexible geometries

o↵ered by the atom assembler technique, and strong co-
herent interactions between Rydberg atoms opens the
way to studies of various intriguing phase of matters.
This work could be extended to realize topological phase
in higher dimensions [49] or to study, e.g., the XXZ spin-
1/2 model by also considering van der Waals interactions
between Rydberg states which was made negligible on
purpose in the present work.
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Figure 4. Probing the SPT phase degeneracy and bulk excitation gap. (A) A microwave sweep ending at �f/(2⇡) =
�1 MHz first prepares the many-body ground state with 6 particles, and we then apply for 2µs a microwave probe with a Rabi
frequency ⌦µw/(2⇡) = 0.3 MHz and a variable detuning �µw. (B) Zoom on the bottom of the energy spectrum of a chain in
the topological configuration. Starting from the ground state with 6 particles (solid disk), we can (i) reach one of the other
degenerate ground states by adding a particle at the edge for zero energy cost. In addition, we can probe the bulk excitation
gap by (ii) adding a particle to, or (iii) removing a particle from, the bulk. (C) Measured occupancy of bulk (blue) and edge
sites (green and brown) showing the three expected transitions. Error bars are s.e.m.

is added at zero energy at the edge, and we reach an-
other of the four degenerate ground states, (ii) particles
are added to the bulk, which requires at least the bulk
gap in energy, while (iii) particles are removed from the
bulk, which appears as a dip at negative detuning.

PROBING THE PROTECTING SYMMETRY

We finally probe the robustness of the four-fold ground
state degeneracy to small perturbations, which respect
the protecting symmetry SB. To do so, we distort the
chain on one side by moving the rightmost site out of
the sub-lattice B, see Fig. 5A. As the edge site and its
second neighbor are not at the ‘magic angle’ anymore,
this creates a coupling J

00
/h ' 0.26 MHz between them.

This perturbation breaks the chiral symmetry protect-
ing the fermionic SSH model, and correspondingly leads
to a splitting of the single-particle edge modes. How-
ever, such a perturbation commutes with the symme-
try SB and therefore should not break the many-body
ground state degeneracy. To check these expectations, we
first repeat the spectroscopic measurement in the single-
particle regime (applying the microwave probe on an
empty chain, as shown in Fig.2A), and observe a splitting
of the edge modes, see Fig. 5B. In contrast, the spectro-
scopic measurement for the bosonic many-body ground
state (applying the probe after the adiabatic prepara-
tion reaching half-filling of the bulk, as done in Fig. 4)
indeed reveals a degenerate ground state, see Fig. 5C.
In [32], we checked that when we prepare the ground
state with a half-filled bulk, i.e., when �f lies in the re-
gion |~�f | < |J | � |J 0|, the spectroscopic measurement
reveals a symmetry protected ground state degeneracy.

The above experiment illustrates that, in contrast to a
non-interacting SPT phase, the robustness of the bosonic
many-body ground state at half-filling cannot be under-
stood at the single-particle level. To gain an intuition for
the di↵erences between the SPT phase of non-interacting
fermions and of hard-core bosons, we use the following
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Figure 5. Perturbation and robustness of the bosonic
topological phase. (A) The rightmost site is shifted up-
wards to give a finite hopping amplitude J 00 to the second
neighbor. (B,C) Probability to find a particle in the left
(green) and right (brown) edge sites when scanning the de-
tuning �µw of the microwave probe. The experiment is per-
formed either on (B) an initially empty chain to observe the
energy di↵erence between the two single-particle edge modes
caused by the perturbation J 00 or (C) on the many-body
ground state with a half-filled bulk (6 particles in a 14-site
chain) to observe the protection of the ground state degener-
acy. Solid lines are Gaussian fits from which we extract an
energy di↵erence of 0.21(1) MHz in (B) and 0.03(2) MHz in
(C).

simple picture. Considering only the three rightmost
sites (the edge and a dimer), and taking the perturba-
tive limit (J � J

0
, J

00), we first obtain the energy of
having no particle on the edge site and one delocalized
on the dimer: �J � (J 0 + J

00)2/ (2J) (the second term is
an energy correction due to virtual hopping of the par-
ticle from the bulk to the edge). On the contrary, when
there is one particle on the dimer and one on the edge, we
obtain �J � (J 0 ± J

00)2/ (2J) with an energy correction
now depending on the particle quantum statistics (+ sign
for bosons, � for fermions, due to commutation rules).
More details can be found in S3.3 of [32]. This simplified
model captures why the fermionic degeneracy is broken



Summary
Edge modes in the  
SSH model 
- implementation of the chiral symmetry 
 
- observation of localized edge modes 
 
- verification of exponential splitting of 
  energy with system size 
 
- benchmarking the experimental results 
  with theoretical predictions

Symmetry protected 
topological phase 
- ground state of the interacting  
  many-body system at half filling 

- first realization of a symmetry protected 
  topological phase in artificial  
 
- quantum simulation of novel  
  states of matter
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Figure 6. Perturbation and robustness of the bosonic
topological phase. (A) The rightmost site is shifted up-
wards to give rise to a finite hopping amplitude J 00 to the
second neighbor. (B,C) Probability P1 to find a particle in
the left (green) and right (brown) edge sites when scanning
the detuning �rmµw of the microwave probe. The experiment
is performed either on an empty chain (B) or on the many-
body state  MB (C). Solid lines are Gaussian fits from which
we obtain the edge state energy. (D) The energy di↵erence
illustrates the robustness of the many-body topological phase
to the perturbation, in constrast to the single-particle case.

(should go to the outlook) Furthermore, the symmetry
SB also allows for complex hoppings of the bosons, as

well as interactions Vij = (2b†i bi � 1)(2b†jbj � 1). Adding
such terms allows us to smoothly connect our experi-
mentally realized SPT phase without closing the gap to
the AKLT model (cite) and the Haldane spin-1 phase
(cite).

OUTLOOK

Our results demonstrates that many-body topologi-
cal phase of matters can be explored using the resonant
dipole exchange interaction between Rydberg atoms.
The preparation fidelity of the atoms in the Rydberg
states can be readily improved by combining our STI-
RAP preparation technique with recent developments in
coherent control of ground-Rydberg qubits [47]. The ex-
aggerated response of Rydberg states to microwave fields
gave a large toolbox for characterizing many-body states
with global rotations of the measurement basis, a feat
di�cult to realize in lattice experiments with ultracold
atoms [48], and it can be completed with our address-
ing laser beam performing individual rotation on the z-
axis [46].
We believe that the combination of flexible geometries

o↵ered by the atom assembler technique, and strong co-
herent interactions between Rydberg atoms opens the
way to studies of various intriguing phase of matters.
This work could be extended to realize topological phase
in higher dimensions [49] or to study, e.g., the XXZ spin-
1/2 model by also considering van der Waals interactions
between Rydberg states which was made negligible on
purpose in the present work.
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Outlook
Topological band structure 

- dipolar exchange interactions 
 
- spin-orbit coupling due to anisotropy 
  of dipole-dipole interaction 
 
- Chern number C=1 or C=2 
 
- probing dynamics of edge states 

tunneling [40, 41], or synthetic dimensions [20, 21, 42], weneither need time-dependent nor spatially
inhomogeneousfields for the realizationof a topological interestingband structure. For studying edge states infinite
systems,wedevelop aband structure analog.Our analysis show that signatures of topologically protected edge states
are present in systemswith as fewas 10 atoms.Considering lattice disorder,wedemonstrate in realistic systems that
the edge states canbeprobedbyobserving the chiralmovement of an edge excitation.The requirements for our
proposal are readilymet by recentRydberg experiments.

Setup

Weconsider an optical lattice occupied by one Rydberg atomper lattice site, see figure 1(a). In this paper, we use
a honeycomb lattice, but our proposal wouldwork similarly for other lattice geometries such as square or
Kagome lattices.We chose the quantization axis to be perpendicular to the lattice.We are interested in aV-level
structure comprising the Rydberg states ñ = = ñ∣ ∣nS m0 , 1 2j1 2 , +ñ = ¢ = ñ∣ ∣n P m, 3 2j3 2 , and -ñ =∣
¢ = - ñ∣n P m, 1 2j3 2 , seefigure 1(b).We apply static, homogeneous electric andmagnetic fields along the

quantization axis to lift the Zeeman degeneracy to isolate theV-level structure fromother Rydberg states. The
energy difference m = +ñ - -ñ(∣ ) (∣ )E E can be adjusted by the fields.

We regard the statewhere all atoms are in the state ñ∣0 as the ground state. In the following,we study systems
containing one excitation to the state +ñ∣ or -ñ∣ . The excitationpropagates through the systembymeans of
dipole–dipole interaction.Note that for our analysis, we just consider dipolar exchange interaction andneglect the
static dipole–dipole interactionof thefinite dipolemoments of theRydberg atoms inducedby the electricfield. In
addition,we ignore van derWaals interaction.These approximations are justified in appendixB. Bydescribing the
creationof a oñ∣ excitation at lattice site i by theoperator = oñ áo ∣ ∣†b 0i i i, and introducing the spinor

y = + -( )† † †b b,i i i, , , we canwrite the operator for the dipolar interactionbetween the lattice site i and j as [36]
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where a is the lattice constant, = -R R Rij j i is the distance vector between the lattice sites, andfij is the angle
between the distance vector and the x-axis. The parameters t+ and t− are the amplitudes of the hopping processes
which conserve the internal angularmomentumof the excitation. The amplitudew belongs to the hopping
process that flips a -ñ∣ excitation into a +ñ∣ excitation, leading to a change in internalmomentumby twowhich
is compensated by a change in orbitalmomentum accounted by be the phase factor f-e 2i ij. Note that in our case
of long-range interaction, the phase factor cannot be obtained through gaugefluxes.

The totalHamiltonian of the system reads
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where the last sum includes the energy difference between +ñ∣ and -ñ∣ excitations.

Topological band structure

For broken time reversal symmetry, i.e. m ¹ 0 or ¹+ -t t , the topological properties of thisHamiltonian are
characterized byChern numbers [36, 43]. Note that ¹+ -t t is intrinsically fulfilled by our setup because of the
different Clebsch–Gordan coefficients for the creation of +ñ∣ and -ñ∣ excitations.

Figure 2(a) shows the density of states and the topological band structure of the infinite honeycomb lattice for a
typical set of parameters. As the unit cell of the honeycomb lattice consists of two sites and the oñ∣ excitationhas a

Figure 1. Setup. (a)Each site of an optical honeycomb lattice is occupied by one Rydberg atom. The quantization axis z is chosen
perpendicular to the lattice. Static electric andmagnetic fields are applied along z, to isolate theV-level structure (b).We consider all
atoms to be in the state ñ∣0 except for one atom excited to the state +ñ∣ or -ñ∣ . The excitation propagates through the systembymeans
of dipole–dipole interaction.
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propagation is robust against the disorder up toσ/a∼0.1. For comparison, we calculated the sample-averaged
Chern number C̄ of the lowest band of an infinite honeycomb lattice for increasing disorder. To include the
disorder into the calculation, we enlarged the unit cell of the honeycomb lattice and added random shifts to the
positions of the atomswithin the enlarged unit cells. Figure 5(b) shows C̄ , which can take non-integer values
because of the averaging over several system realizations, for various sizes of the unit cell. For infinite unit cells,
we expect a sharp transition between the topological and the trivial phase due to self-averaging of disorder. The
disappearance of the chiral propagation of the edge excitation coincideswith theChern number becoming zero,
which confirms nicely that the chiral edgemodes are the characteristic feature of the non-zero Chern numbers.
A similar analysis indicates that lattice vacancies are tolerable up to a vacancy probability of∼20%.Note that the
robustness to vacancies has previously been studied in [36, 37].

Due to the robustness, the requirements for realizing such systems are readilymet by recent experiments
where the lattice disorder is belowσ/a<0.1 and fully loaded systemswith up to∼50 atoms exist [28–30].
Because of the robustness to lattice vacancies, we can also tolerate errors in the preparation of the Rydberg states.

Experimental realization

In the following, we give realistic experimental parameters for realizing the Rydberg level structure and hopping
amplitudes whichwere used throughout the paper.We suggest to use the principal quantumnumber n=63 for

Figure 4.Chiral propagation of edge excitations into the +ñ∣ state, probing the edge states between the two lowest bands in the semi-
infinite lattice (a), the disk-shaped systemwith 31 atoms (b), and the disk-shaped systemwith 10 atoms (c). As infigure 3, the area of
the dots is proportional to the probability offinding an excitation. The center ofmassmovements of the excitations are depicted as
black lines. Their velocities agree with the group velocities extracted from the band structures shown infigure 3.

Figure 5.Effects of lattice disorder. The shifts of the lattice sites obey a normal distributionwith standard deviationσ. (a)We study the
effect on the propagation of an edge excitation averaged over 800 system realizations. (b)Average Chern number C̄ of the lowest band
of the infinite honeycomb lattice calculated for unit cells of different sizes for increasing lattice disorder. The standard error is of the
size of the width of the plotted curves. The disappearance of the chiral propagation of the edge excitation, best visible in the vanishing
of the circularmovement of the center ofmass of the excitation (black line), coincides with theChern number becoming zero.
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quantum many-body states? 
 
fractional bosonic Chern insulators? 
 
dynamical preparation? 
 
competition with losses?


