
NICOLE YUNGER HALPERN

“Exploring Open Quantum Systems in Quantum Simulators” conference, KITP, 4/19

SIMPLE BOUNDS ON FAR-FROM-EQUILIBRIUM MACHINES, 
FROM QUANTUM INFORMATION THEORY

Harvard-Smithsonian ITAMP 
(Institute for Theoretical Atomic, Molecular, and Optical Physics) 

Harvard University Department of Physics

NYH and Limmer, arXiv:1811.06551 (2018).







The photoisomer



The photoisomer

2

E1 cis

trans

E

FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
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ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).
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models heat exchanges. We then model the molecule,
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its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
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citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
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tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
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resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.
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molecule during photoisomerization (Sec. III). We quan-
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and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
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tion, which we model within the resource theory. Elec-
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nally, we calculate two work quantities (Sec. IV): (i) the
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molecule and (ii) the work extractable from the coher-
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I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

Cis

(possible)

0º



The photoisomer

2

E1 cis

trans

E

FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
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ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

2

E1 cis

trans

E

FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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configurations generated photochemically. One of the most
promising candidate chromophore/template systems indicated by
our computational screening was azobenzene-functionalized single-
walled carbon nanotubes (SWCNTs) with a functionalization
density of one azobenzene chromophore for every eight SWCNT
carbon atoms (noted as 1/8)19,20. Although using a light-absorbing
template such as a SWCNT is not ideal, this type of disadvantage is
minimized at high functionalization densities by minimizing the
mass fraction of the template and by disrupting the conjugation
that leads to the electronic transitions responsible for absorption.

Our prior computational modelling showed that even
without engineering inter- and intramolecular hydrogen bonding,
close packing via templating increased the amount of energy
stored per azobenzene by 30% versus that of the free analogue19.
To observe any of these effects, the intermolecular packing
must approach, at least locally, a level corresponding to that of a
(2n,0)-SWCNT with a functionalization density of 1/8 (that is,
!4.24 Å separation down the long axis of the SWCNT), and the
azobenzenes must be bound covalently to prevent undesired
relaxation of the (con)strained systems once generated. Thus,
we set out to test azobenzene-functionalized SWCNTs
(Azo-SWCNTs) as an initial proof-of-principle for our new
approach to molecular hybrid nanostructures for solar thermal
fuels, focusing on the effect of template-enforced steric
restriction. As discussed below, we synthesized Azo-SWCNTs
with a functionalization density of 1/18.2(3). Along with a non-
templated molecular analogue, these Azo-SWCNTs allowed us to
probe the effect of packing as a result of templating under

different conditions: in dilute suspensions there are minimal
packing interactions, whereas the solid-state bundling of the
Azo-SWCNTs can increase the effective functionalization density
(decrease the intermolecular separation) by roughly twofold,
which leads to the desired packing interactions (as discussed later
and depicted in Fig. 4).

Synthesis of azobenzene-functionalized SWCNTs. There are few
methods that covalently functionalize SWCNTs21,22 to the extent
required for our purposes. Prior to this work, multi- and single-
walled carbon nanotubes had been modified with azobenzenes23

only non-covalently or covalently at functionalization densities
orders of magnitude lower than those needed to observe attractive
solar thermal energy density and storage-lifetime properties. As a
starting point for our synthetic method, we chose to append the
linkers to the SWCNTs via organic radicals, a method that had
been demonstrated previously to yield functionalization densities
as high as 1/5 for simple alkyl fragments24. We tested two
approaches to the synthesis of Azo-SWCNTs: (1) appending a
high density of linkers that contain esters for subsequent
conversion into azobenzene amides (Supplementary Fig. 1),
and (2) direct functionalization with organic radicals with
amide-linked azobenzenes, as shown in Fig. 1a.

Initial functionalization of SWCNTs via route (1) yielded a func-
tionalization density of 1/19 in a single step as determined by ther-
mogravimetric analysis (TGA; details in the Supplementary
Information) after repeated resuspension and washing to remove
any molecules not covalently bound to the SWCNTs. However,
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Figure 1 | Synthesis and characterization of azobenzene-functionalized SWCNTs. a, Synthetic scheme for the iterative functionalization of SWCNTs with
azobenzenes. b, A suspension of SWCNTs functionalized with ethyl 4-butylate in acetone after standing undisturbed for one month. c, FTIR spectra of free
azobenzene Azo-4, pristine SWCNTs and Azo-SWCNT 1. d, Representative TGA plots of pristine SWCNTs and Azo-SWCNTs 1, 2 and 3 heated from 100 to
750 8C and held at 750 8C, which yielded a constant degradation rate with respect to time once the functional groups were removed. e, The difference in
mass loss between samples of Azo-SWCNTs 1, 2 and 3 and pristine SWCNTs during the constant-rate decomposition of SWCNTs, which yielded averages of
31.2(5), 40.4(3) and 53.3(2) wt% functional groups for Azo-SWCNTs 1, 2 and 3, respectively (see Supplementary Information for the full data set).
a.u., arbitrary units.
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configurations generated photochemically. One of the most
promising candidate chromophore/template systems indicated by
our computational screening was azobenzene-functionalized single-
walled carbon nanotubes (SWCNTs) with a functionalization
density of one azobenzene chromophore for every eight SWCNT
carbon atoms (noted as 1/8)19,20. Although using a light-absorbing
template such as a SWCNT is not ideal, this type of disadvantage is
minimized at high functionalization densities by minimizing the
mass fraction of the template and by disrupting the conjugation
that leads to the electronic transitions responsible for absorption.

Our prior computational modelling showed that even
without engineering inter- and intramolecular hydrogen bonding,
close packing via templating increased the amount of energy
stored per azobenzene by 30% versus that of the free analogue19.
To observe any of these effects, the intermolecular packing
must approach, at least locally, a level corresponding to that of a
(2n,0)-SWCNT with a functionalization density of 1/8 (that is,
!4.24 Å separation down the long axis of the SWCNT), and the
azobenzenes must be bound covalently to prevent undesired
relaxation of the (con)strained systems once generated. Thus,
we set out to test azobenzene-functionalized SWCNTs
(Azo-SWCNTs) as an initial proof-of-principle for our new
approach to molecular hybrid nanostructures for solar thermal
fuels, focusing on the effect of template-enforced steric
restriction. As discussed below, we synthesized Azo-SWCNTs
with a functionalization density of 1/18.2(3). Along with a non-
templated molecular analogue, these Azo-SWCNTs allowed us to
probe the effect of packing as a result of templating under

different conditions: in dilute suspensions there are minimal
packing interactions, whereas the solid-state bundling of the
Azo-SWCNTs can increase the effective functionalization density
(decrease the intermolecular separation) by roughly twofold,
which leads to the desired packing interactions (as discussed later
and depicted in Fig. 4).

Synthesis of azobenzene-functionalized SWCNTs. There are few
methods that covalently functionalize SWCNTs21,22 to the extent
required for our purposes. Prior to this work, multi- and single-
walled carbon nanotubes had been modified with azobenzenes23

only non-covalently or covalently at functionalization densities
orders of magnitude lower than those needed to observe attractive
solar thermal energy density and storage-lifetime properties. As a
starting point for our synthetic method, we chose to append the
linkers to the SWCNTs via organic radicals, a method that had
been demonstrated previously to yield functionalization densities
as high as 1/5 for simple alkyl fragments24. We tested two
approaches to the synthesis of Azo-SWCNTs: (1) appending a
high density of linkers that contain esters for subsequent
conversion into azobenzene amides (Supplementary Fig. 1),
and (2) direct functionalization with organic radicals with
amide-linked azobenzenes, as shown in Fig. 1a.

Initial functionalization of SWCNTs via route (1) yielded a func-
tionalization density of 1/19 in a single step as determined by ther-
mogravimetric analysis (TGA; details in the Supplementary
Information) after repeated resuspension and washing to remove
any molecules not covalently bound to the SWCNTs. However,
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Figure 1 | Synthesis and characterization of azobenzene-functionalized SWCNTs. a, Synthetic scheme for the iterative functionalization of SWCNTs with
azobenzenes. b, A suspension of SWCNTs functionalized with ethyl 4-butylate in acetone after standing undisturbed for one month. c, FTIR spectra of free
azobenzene Azo-4, pristine SWCNTs and Azo-SWCNT 1. d, Representative TGA plots of pristine SWCNTs and Azo-SWCNTs 1, 2 and 3 heated from 100 to
750 8C and held at 750 8C, which yielded a constant degradation rate with respect to time once the functional groups were removed. e, The difference in
mass loss between samples of Azo-SWCNTs 1, 2 and 3 and pristine SWCNTs during the constant-rate decomposition of SWCNTs, which yielded averages of
31.2(5), 40.4(3) and 53.3(2) wt% functional groups for Azo-SWCNTs 1, 2 and 3, respectively (see Supplementary Information for the full data set).
a.u., arbitrary units.
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configurations generated photochemically. One of the most
promising candidate chromophore/template systems indicated by
our computational screening was azobenzene-functionalized single-
walled carbon nanotubes (SWCNTs) with a functionalization
density of one azobenzene chromophore for every eight SWCNT
carbon atoms (noted as 1/8)19,20. Although using a light-absorbing
template such as a SWCNT is not ideal, this type of disadvantage is
minimized at high functionalization densities by minimizing the
mass fraction of the template and by disrupting the conjugation
that leads to the electronic transitions responsible for absorption.

Our prior computational modelling showed that even
without engineering inter- and intramolecular hydrogen bonding,
close packing via templating increased the amount of energy
stored per azobenzene by 30% versus that of the free analogue19.
To observe any of these effects, the intermolecular packing
must approach, at least locally, a level corresponding to that of a
(2n,0)-SWCNT with a functionalization density of 1/8 (that is,
!4.24 Å separation down the long axis of the SWCNT), and the
azobenzenes must be bound covalently to prevent undesired
relaxation of the (con)strained systems once generated. Thus,
we set out to test azobenzene-functionalized SWCNTs
(Azo-SWCNTs) as an initial proof-of-principle for our new
approach to molecular hybrid nanostructures for solar thermal
fuels, focusing on the effect of template-enforced steric
restriction. As discussed below, we synthesized Azo-SWCNTs
with a functionalization density of 1/18.2(3). Along with a non-
templated molecular analogue, these Azo-SWCNTs allowed us to
probe the effect of packing as a result of templating under

different conditions: in dilute suspensions there are minimal
packing interactions, whereas the solid-state bundling of the
Azo-SWCNTs can increase the effective functionalization density
(decrease the intermolecular separation) by roughly twofold,
which leads to the desired packing interactions (as discussed later
and depicted in Fig. 4).

Synthesis of azobenzene-functionalized SWCNTs. There are few
methods that covalently functionalize SWCNTs21,22 to the extent
required for our purposes. Prior to this work, multi- and single-
walled carbon nanotubes had been modified with azobenzenes23

only non-covalently or covalently at functionalization densities
orders of magnitude lower than those needed to observe attractive
solar thermal energy density and storage-lifetime properties. As a
starting point for our synthetic method, we chose to append the
linkers to the SWCNTs via organic radicals, a method that had
been demonstrated previously to yield functionalization densities
as high as 1/5 for simple alkyl fragments24. We tested two
approaches to the synthesis of Azo-SWCNTs: (1) appending a
high density of linkers that contain esters for subsequent
conversion into azobenzene amides (Supplementary Fig. 1),
and (2) direct functionalization with organic radicals with
amide-linked azobenzenes, as shown in Fig. 1a.

Initial functionalization of SWCNTs via route (1) yielded a func-
tionalization density of 1/19 in a single step as determined by ther-
mogravimetric analysis (TGA; details in the Supplementary
Information) after repeated resuspension and washing to remove
any molecules not covalently bound to the SWCNTs. However,
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Figure 1 | Synthesis and characterization of azobenzene-functionalized SWCNTs. a, Synthetic scheme for the iterative functionalization of SWCNTs with
azobenzenes. b, A suspension of SWCNTs functionalized with ethyl 4-butylate in acetone after standing undisturbed for one month. c, FTIR spectra of free
azobenzene Azo-4, pristine SWCNTs and Azo-SWCNT 1. d, Representative TGA plots of pristine SWCNTs and Azo-SWCNTs 1, 2 and 3 heated from 100 to
750 8C and held at 750 8C, which yielded a constant degradation rate with respect to time once the functional groups were removed. e, The difference in
mass loss between samples of Azo-SWCNTs 1, 2 and 3 and pristine SWCNTs during the constant-rate decomposition of SWCNTs, which yielded averages of
31.2(5), 40.4(3) and 53.3(2) wt% functional groups for Azo-SWCNTs 1, 2 and 3, respectively (see Supplementary Information for the full data set).
a.u., arbitrary units.
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Headway seems to require assumptions,
but the usual ones can be violated.

Worth asking,
“How effectively can these molecular switches switch?”
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).
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In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
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source W , such as work, is required to facilitate an oth-
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copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).
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In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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represent diabatic states, which approximately equal
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

180º 
Trans

0º 
Cis

-Bath needed

Photoisomerization



2

E1 cis

trans

E

FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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• Example (thermodynamics in a 
temperature-T atmosphere):

free operations

• Example: conserve energy  
(obey the first law)

• Everything not free is a resource.

• Example: athermal states ρ ≠ e−H/(kBT)/Z
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• Simple, information-theoretic models 



How to model your favorite system in a thermodynamic resource theory



Brandão et al., Phys. Rev. Lett. 111, 250404 (2013).

Lieb and Yngvason, Amer. Math. Soc. 45, 5 (1998).
Janzing et al., Int. J. Theor. Phys. 39, 12 (2000).

• Earliest literature:

How to model your favorite system in a thermodynamic resource theory



Brandão et al., Phys. Rev. Lett. 111, 250404 (2013).

Lieb and Yngvason, Amer. Math. Soc. 45, 5 (1998).
Janzing et al., Int. J. Theor. Phys. 39, 12 (2000).

• How to specify a system: ℋ, (ρ, H)

• Earliest literature:

How to model your favorite system in a thermodynamic resource theory



Brandão et al., Phys. Rev. Lett. 111, 250404 (2013).

Lieb and Yngvason, Amer. Math. Soc. 45, 5 (1998).
Janzing et al., Int. J. Theor. Phys. 39, 12 (2000).

• Agent given access to bath at β =
1

kBT

• How to specify a system: ℋ, (ρ, H)

• Earliest literature:

How to model your favorite system in a thermodynamic resource theory



Brandão et al., Phys. Rev. Lett. 111, 250404 (2013).

Lieb and Yngvason, Amer. Math. Soc. 45, 5 (1998).
Janzing et al., Int. J. Theor. Phys. 39, 12 (2000).

• Agent given access to bath at 

• Free states: thermal relative to 

β =
1

kBT

β ( e−βHB

Z
, HB)

• How to specify a system: ℋ, (ρ, H)

• Earliest literature:

How to model your favorite system in a thermodynamic resource theory



Free operations

• Thermal operations



Free operations

• Thermal operations

• Tend to thermalize states



Free operations

• Each free operation consists of                                      .

• Thermal operations

• Tend to thermalize states



Free operations

• Each free operation consists of                                      .

1)  Draw any free state from the bath.

• Thermal operations

• Tend to thermalize states



Free operations

• Each free operation consists of                                      .

1)  Draw any free state from the bath.
2)  Perform any unitary that conserves the total energy. 

U = e−iHintt

• Thermal operations

• Tend to thermalize states



Free operations

• Each free operation consists of                                      .

1)  Draw any free state from the bath.
2)  Perform any unitary that conserves the total energy. 

3) Discard a subsystem.
U = e−iHintt
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

= ℋelec ⊗ ℋnuc

• Hamiltonian: Hmol =
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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• Hamiltonian: Hmol = 1elec ⊗
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the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

= ℋelec ⊗ ℋnuc
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the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

Modeling photoisomerization’s steps with thermal operations



Initial molecule-and-laser state: e−βHelec /Zelec ⊗ |φ = 0⟩⟨φ = 0 |

2

E1 cis

trans

E
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as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

Initial molecule-and-laser state: e−βHelec /Zelec ⊗ |φ = 0⟩⟨φ = 0 |
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

Initial molecule-and-laser state: e−βHelec /Zelec ⊗ |φ = 0⟩⟨φ = 0 |

Modeling photoisomerization’s steps with thermal operations

⊗ ρlaser (photoexcitation)↦

σelec ⊗ |φ = π⟩⟨φ = π |

↦ (rotation)ρelec ⊗ |φ = 0⟩⟨φ = 0 |
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as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

Question

• How large a probability weight can the final state have on the lower level?
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Second law in conventional thermodynamics

• Can a system transition from one state to another spontaneously?

• Compare free energies. F = E − TS

• Do they satisfy (the appropriate manifestation of) the second law? ΔF ≤ 0

• Setting: equilibrium, large-system limit, implicit averaging

?
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• One subfamily of inequalities governs the state’s energy diagonal.

p1 a c
a* p2 b
c* b* ⋱

pd

(ρ, H) ↦ (σ, H′�)?

H

• Another subfamily governs the coherences.

• We want to bound a diagonal element.
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

φ = 0 φ = π



Applying the second laws of thermodynamics to the photoisomer

(ρ, H) ↦ (σ, H′�)?

ρelec ⊗ |φ = 0⟩⟨φ = 0 |

2

E1 cis

trans

E

FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

φ = 0 φ = π

σelec ⊗ |φ = π⟩⟨φ = π |ρelec ⊗ |φ = 0⟩⟨φ = 0 |
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

φ = 0 φ = π

[Helec(φ) ⊗ |φ⟩⟨φ |+Hmol = ∫
π

0
dφ 1elec ⊗

ℓ2
φ

2m ]

ρelec ⊗ |φ = 0⟩⟨φ = 0 | σelec ⊗ |φ = π⟩⟨φ = π |
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

φ = 0 φ = π

[Helec(φ) ⊗ |φ⟩⟨φ |+Hmol = ∫
π

0
dφ 1elec ⊗

ℓ2
φ

2m ]
Effective 4-level system:
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the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

φ = 0 φ = π

[Helec(φ) ⊗ |φ⟩⟨φ |+Hmol = ∫
π

0
dφ 1elec ⊗

ℓ2
φ

2m ]
Effective 4-level system:

(2 nuclear states) 
⨉ (2 electronic states)
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A density operator can be broken into modes, each defined by a gap.
The modes transform independently under thermal operations.

Coherence theorem
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
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represent diabatic states, which approximately equal
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

• We want to bound a diagonal element.
• Coherences can’t affect it, in the absence of external resources.

• So, in our calculations, we can replace the states with decohered states.
• So our bound will depend on just the states’ diagonal elements.

Implication for photoisomer
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

• We want to bound a diagonal element.
• Coherences can’t affect it, in the absence of external resources.

• So, in our calculations, we can replace the states with decohered states.
• So our bound will depend on just the states’ diagonal elements.
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

• We want to bound a diagonal element.
• Coherences can’t affect it, in the absence of external resources.

• So, in our calculations, we can replace the states with decohered states.
• So our bound will depend on just the states’ diagonal elements.

Implication for photoisomer
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Apply the second laws of thermodynamics  
to the photoisomer.

2

E1 cis

trans

E

FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

+
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as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

Bounds on photoisomerization yield
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
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source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

Bounds on photoisomerization yield

r+ s+

s−

r−



2

E1 cis

trans

E

FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.
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We bound the isomerization yield by applying the re-
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source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
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and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
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cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
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theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
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ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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at a fixed angular coordinate. ⇢i denotes the new elec-
tronic state. Second, the molecule rotates:

⇢i ⌦ |'=0ih'=0| 7!TO ⇢f ⌦ |'=⇡ih'=⇡| . (7)

⇢f denotes the post-photoisomerization state. Maximiz-
ing the isomerization yield amounts to maximizing the
final state’s weight on the lower trans level, p�(⇡) :=
hE�(⇡)|⇢f |E�(⇡)i. In a more sophisticated model, the
thermal operation (7) decomposes as a sequence of ther-
mal operations. The angular DOF ' serves as a quan-
tum clock [69, 70, 78–85] as the molecule rotates at some
speed v. This sequence models a dissipative Landau-
Zener transition and is detailed in the Appendix. Third,
the molecule thermalizes to exp(��Hmol)/Zmol.

II. LIMITATIONS ON
PHOTOISOMERIZATION YIELD

The rotational thermal operation (7) leaves the elec-
tronic DOF in a state ⇢f . We bound the optimal iso-
merization yield ⇢�(⇡) via the resource-theory result of
thermomajorization. By “optimal isomerization yield,”
we mean the greatest value of p�(⇡) accessible after the
preparation of ⇢i.

Thermomajorization is a preorder that constrains the
populations’ evolutions under thermal operations [61,

64, 86–92]. Let H =
P

d

j=1
Ej |jihj| denote a Hamilto-

nian that governs a state ⇢ of energy diagonal D(⇢) :=P
j
|jihj|⇢|jihj| =

P
j
rj |jihj|. Consider rescaling the

probabilities with Boltzmann factors, rje�Ej , and order-
ing the products such that rj0e

�Ej0 � rk0e
�Ek0 for all j0 >

k
0. The convex hull of points

⇣P
↵

j0=1
e
��Ej0 ,

P
↵

j0=1
pj0

⌘
,

for all ↵ = 1, 2, . . . , d, defines a piecewise-linear
curve. This Gibbs-rescaled Lorenz curve is denoted by
L(⇢,H)(x), wherein the abscissa x 2 [0, Z] and Z :=
P

d

j=1
exp(��Ej). Let (�, H) denote another system,

represented by a Lorenz curve L(�,H)(x). If the (⇢, H)
curve lies above or on the (�, H) curve at all x 2 [0, Z],
we say that (⇢, H) thermomajorizes (�, H). If and only if
(⇢, H) thermomajorizes (�, H) does there exist a thermal
operation that maps the first system’s energy diagonal to
the second system’s:

L(⇢,H)(x) � L(�,H)(x) 8x 2 [0, Z] , (8)

9T : T (D(⇢), H) = (D(�), H).

Relation (8) generalizes the second law of thermodynam-
ics to arbitrarily small systems and to single shots.

The curve L(⇢,H) illustrates the thermodynamic value
of (⇢, H) by codifying the system’s informational and en-
ergetic resourcefulness. If the energies di↵er, rj denotes
the probability that measuring H will yield Ej . The
more uniform {rj} is, the more uncertain the energy,
and the less information ⇢ encodes. If the Ej ’s equal

Thermomajorization Equilibrium
a) b) c)

FIG. 2: Thermomajorization bound on the
photoisomerization yield ⇢�(⇡) and comparisons with
equilibrium statistical mechanics. The red dashed curve
shows the predicted equilibrium yield, and the blue solid
curve shows the resource-theory bound. Possible optimal
yields shown in the gray region from an initially excited state
a), from an initial superposition b), and from an unexcited
state c). The insets illustrate the molecule’s energy levels.
The shaded dots show the initial state’s probability weights.

each other, {rj} equals the distribution over the degen-
eracies. In this case, L(⇢,H) illustrates the nonunifor-
mity of {rj} in a way that no reduced measure, such as
an entropy, can [61, 64, 65, 86–92]. In thermodynamics,
not only information, but also energy, has value. Rescal-
ing the probabilities rj with the inverse Boltzmann fac-
tors e�Ej incorporates energetic resourcefulness into the
information-theoretic L(⇢,H). These informational and
energetic resources mirror the two terms in the Helmholtz
free energy, F = E�TS. But the Helmholtz free energy
characterizes average, equilibrium properties of large sys-
tems. Thermomajorization governs arbitrary nonequilib-
rium states of arbitrarily small systems.

II A. Thermomajorization bound

To bound the optimal photoisomerization yield ⇢�(⇡),
we construct the Gibbs-rescaled Lorenz curves for (i) the
postexcitation state ⇢i and (ii) the post-rotation state
⇢f . We then solve for the greatest ⇢�(⇡) that enables the
photoexcited state to thermomajorize ⇢f :

L(⇢i⌦|'=0ih'=0|,Hmol)(x)

� L(⇢f⌦|'=⇡ih'=⇡|,Hmol)(x) 8x 2 [0, Zmol]. (9)

In the following, we consider only two allowable angles,
' = 0,⇡, which define the cis and trans states. We
assess how the bound depends on the cis-trans energy
gap �E := E�(⇡)�E�(0), expressed in units of 1/�. We
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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at a fixed angular coordinate. ⇢i denotes the new elec-
tronic state. Second, the molecule rotates:

⇢i ⌦ |'=0ih'=0| 7!TO ⇢f ⌦ |'=⇡ih'=⇡| . (7)

⇢f denotes the post-photoisomerization state. Maximiz-
ing the isomerization yield amounts to maximizing the
final state’s weight on the lower trans level, p�(⇡) :=
hE�(⇡)|⇢f |E�(⇡)i. In a more sophisticated model, the
thermal operation (7) decomposes as a sequence of ther-
mal operations. The angular DOF ' serves as a quan-
tum clock [69, 70, 78–85] as the molecule rotates at some
speed v. This sequence models a dissipative Landau-
Zener transition and is detailed in the Appendix. Third,
the molecule thermalizes to exp(��Hmol)/Zmol.

II. LIMITATIONS ON
PHOTOISOMERIZATION YIELD

The rotational thermal operation (7) leaves the elec-
tronic DOF in a state ⇢f . We bound the optimal iso-
merization yield ⇢�(⇡) via the resource-theory result of
thermomajorization. By “optimal isomerization yield,”
we mean the greatest value of p�(⇡) accessible after the
preparation of ⇢i.

Thermomajorization is a preorder that constrains the
populations’ evolutions under thermal operations [61,

64, 86–92]. Let H =
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nian that governs a state ⇢ of energy diagonal D(⇢) :=P
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for all ↵ = 1, 2, . . . , d, defines a piecewise-linear
curve. This Gibbs-rescaled Lorenz curve is denoted by
L(⇢,H)(x), wherein the abscissa x 2 [0, Z] and Z :=
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exp(��Ej). Let (�, H) denote another system,

represented by a Lorenz curve L(�,H)(x). If the (⇢, H)
curve lies above or on the (�, H) curve at all x 2 [0, Z],
we say that (⇢, H) thermomajorizes (�, H). If and only if
(⇢, H) thermomajorizes (�, H) does there exist a thermal
operation that maps the first system’s energy diagonal to
the second system’s:

L(⇢,H)(x) � L(�,H)(x) 8x 2 [0, Z] , (8)

9T : T (D(⇢), H) = (D(�), H).

Relation (8) generalizes the second law of thermodynam-
ics to arbitrarily small systems and to single shots.

The curve L(⇢,H) illustrates the thermodynamic value
of (⇢, H) by codifying the system’s informational and en-
ergetic resourcefulness. If the energies di↵er, rj denotes
the probability that measuring H will yield Ej . The
more uniform {rj} is, the more uncertain the energy,
and the less information ⇢ encodes. If the Ej ’s equal

Thermomajorization Equilibrium
a) b) c)

FIG. 2: Thermomajorization bound on the
photoisomerization yield ⇢�(⇡) and comparisons with
equilibrium statistical mechanics. The red dashed curve
shows the predicted equilibrium yield, and the blue solid
curve shows the resource-theory bound. Possible optimal
yields shown in the gray region from an initially excited state
a), from an initial superposition b), and from an unexcited
state c). The insets illustrate the molecule’s energy levels.
The shaded dots show the initial state’s probability weights.

each other, {rj} equals the distribution over the degen-
eracies. In this case, L(⇢,H) illustrates the nonunifor-
mity of {rj} in a way that no reduced measure, such as
an entropy, can [61, 64, 65, 86–92]. In thermodynamics,
not only information, but also energy, has value. Rescal-
ing the probabilities rj with the inverse Boltzmann fac-
tors e�Ej incorporates energetic resourcefulness into the
information-theoretic L(⇢,H). These informational and
energetic resources mirror the two terms in the Helmholtz
free energy, F = E�TS. But the Helmholtz free energy
characterizes average, equilibrium properties of large sys-
tems. Thermomajorization governs arbitrary nonequilib-
rium states of arbitrarily small systems.

II A. Thermomajorization bound

To bound the optimal photoisomerization yield ⇢�(⇡),
we construct the Gibbs-rescaled Lorenz curves for (i) the
postexcitation state ⇢i and (ii) the post-rotation state
⇢f . We then solve for the greatest ⇢�(⇡) that enables the
photoexcited state to thermomajorize ⇢f :

L(⇢i⌦|'=0ih'=0|,Hmol)(x)

� L(⇢f⌦|'=⇡ih'=⇡|,Hmol)(x) 8x 2 [0, Zmol]. (9)

In the following, we consider only two allowable angles,
' = 0,⇡, which define the cis and trans states. We
assess how the bound depends on the cis-trans energy
gap �E := E�(⇡)�E�(0), expressed in units of 1/�. We
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thermal operation (7) decomposes as a sequence of ther-
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for all ↵ = 1, 2, . . . , d, defines a piecewise-linear
curve. This Gibbs-rescaled Lorenz curve is denoted by
L(⇢,H)(x), wherein the abscissa x 2 [0, Z] and Z :=
P

d

j=1
exp(��Ej). Let (�, H) denote another system,

represented by a Lorenz curve L(�,H)(x). If the (⇢, H)
curve lies above or on the (�, H) curve at all x 2 [0, Z],
we say that (⇢, H) thermomajorizes (�, H). If and only if
(⇢, H) thermomajorizes (�, H) does there exist a thermal
operation that maps the first system’s energy diagonal to
the second system’s:

L(⇢,H)(x) � L(�,H)(x) 8x 2 [0, Z] , (8)

9T : T (D(⇢), H) = (D(�), H).

Relation (8) generalizes the second law of thermodynam-
ics to arbitrarily small systems and to single shots.

The curve L(⇢,H) illustrates the thermodynamic value
of (⇢, H) by codifying the system’s informational and en-
ergetic resourcefulness. If the energies di↵er, rj denotes
the probability that measuring H will yield Ej . The
more uniform {rj} is, the more uncertain the energy,
and the less information ⇢ encodes. If the Ej ’s equal
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FIG. 2: Thermomajorization bound on the
photoisomerization yield ⇢�(⇡) and comparisons with
equilibrium statistical mechanics. The red dashed curve
shows the predicted equilibrium yield, and the blue solid
curve shows the resource-theory bound. Possible optimal
yields shown in the gray region from an initially excited state
a), from an initial superposition b), and from an unexcited
state c). The insets illustrate the molecule’s energy levels.
The shaded dots show the initial state’s probability weights.

each other, {rj} equals the distribution over the degen-
eracies. In this case, L(⇢,H) illustrates the nonunifor-
mity of {rj} in a way that no reduced measure, such as
an entropy, can [61, 64, 65, 86–92]. In thermodynamics,
not only information, but also energy, has value. Rescal-
ing the probabilities rj with the inverse Boltzmann fac-
tors e�Ej incorporates energetic resourcefulness into the
information-theoretic L(⇢,H). These informational and
energetic resources mirror the two terms in the Helmholtz
free energy, F = E�TS. But the Helmholtz free energy
characterizes average, equilibrium properties of large sys-
tems. Thermomajorization governs arbitrary nonequilib-
rium states of arbitrarily small systems.

II A. Thermomajorization bound

To bound the optimal photoisomerization yield ⇢�(⇡),
we construct the Gibbs-rescaled Lorenz curves for (i) the
postexcitation state ⇢i and (ii) the post-rotation state
⇢f . We then solve for the greatest ⇢�(⇡) that enables the
photoexcited state to thermomajorize ⇢f :

L(⇢i⌦|'=0ih'=0|,Hmol)(x)

� L(⇢f⌦|'=⇡ih'=⇡|,Hmol)(x) 8x 2 [0, Zmol]. (9)

In the following, we consider only two allowable angles,
' = 0,⇡, which define the cis and trans states. We
assess how the bound depends on the cis-trans energy
gap �E := E�(⇡)�E�(0), expressed in units of 1/�. We
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ing the isomerization yield amounts to maximizing the
final state’s weight on the lower trans level, p�(⇡) :=
hE�(⇡)|⇢f |E�(⇡)i. In a more sophisticated model, the
thermal operation (7) decomposes as a sequence of ther-
mal operations. The angular DOF ' serves as a quan-
tum clock [69, 70, 78–85] as the molecule rotates at some
speed v. This sequence models a dissipative Landau-
Zener transition and is detailed in the Appendix. Third,
the molecule thermalizes to exp(��Hmol)/Zmol.

II. LIMITATIONS ON
PHOTOISOMERIZATION YIELD

The rotational thermal operation (7) leaves the elec-
tronic DOF in a state ⇢f . We bound the optimal iso-
merization yield ⇢�(⇡) via the resource-theory result of
thermomajorization. By “optimal isomerization yield,”
we mean the greatest value of p�(⇡) accessible after the
preparation of ⇢i.
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for all ↵ = 1, 2, . . . , d, defines a piecewise-linear
curve. This Gibbs-rescaled Lorenz curve is denoted by
L(⇢,H)(x), wherein the abscissa x 2 [0, Z] and Z :=
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exp(��Ej). Let (�, H) denote another system,

represented by a Lorenz curve L(�,H)(x). If the (⇢, H)
curve lies above or on the (�, H) curve at all x 2 [0, Z],
we say that (⇢, H) thermomajorizes (�, H). If and only if
(⇢, H) thermomajorizes (�, H) does there exist a thermal
operation that maps the first system’s energy diagonal to
the second system’s:

L(⇢,H)(x) � L(�,H)(x) 8x 2 [0, Z] , (8)

9T : T (D(⇢), H) = (D(�), H).

Relation (8) generalizes the second law of thermodynam-
ics to arbitrarily small systems and to single shots.

The curve L(⇢,H) illustrates the thermodynamic value
of (⇢, H) by codifying the system’s informational and en-
ergetic resourcefulness. If the energies di↵er, rj denotes
the probability that measuring H will yield Ej . The
more uniform {rj} is, the more uncertain the energy,
and the less information ⇢ encodes. If the Ej ’s equal
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photoisomerization yield ⇢�(⇡) and comparisons with
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shows the predicted equilibrium yield, and the blue solid
curve shows the resource-theory bound. Possible optimal
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state c). The insets illustrate the molecule’s energy levels.
The shaded dots show the initial state’s probability weights.

each other, {rj} equals the distribution over the degen-
eracies. In this case, L(⇢,H) illustrates the nonunifor-
mity of {rj} in a way that no reduced measure, such as
an entropy, can [61, 64, 65, 86–92]. In thermodynamics,
not only information, but also energy, has value. Rescal-
ing the probabilities rj with the inverse Boltzmann fac-
tors e�Ej incorporates energetic resourcefulness into the
information-theoretic L(⇢,H). These informational and
energetic resources mirror the two terms in the Helmholtz
free energy, F = E�TS. But the Helmholtz free energy
characterizes average, equilibrium properties of large sys-
tems. Thermomajorization governs arbitrary nonequilib-
rium states of arbitrarily small systems.

II A. Thermomajorization bound

To bound the optimal photoisomerization yield ⇢�(⇡),
we construct the Gibbs-rescaled Lorenz curves for (i) the
postexcitation state ⇢i and (ii) the post-rotation state
⇢f . We then solve for the greatest ⇢�(⇡) that enables the
photoexcited state to thermomajorize ⇢f :

L(⇢i⌦|'=0ih'=0|,Hmol)(x)

� L(⇢f⌦|'=⇡ih'=⇡|,Hmol)(x) 8x 2 [0, Zmol]. (9)

In the following, we consider only two allowable angles,
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assess how the bound depends on the cis-trans energy
gap �E := E�(⇡)�E�(0), expressed in units of 1/�. We
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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at a fixed angular coordinate. ⇢i denotes the new elec-
tronic state. Second, the molecule rotates:

⇢i ⌦ |'=0ih'=0| 7!TO ⇢f ⌦ |'=⇡ih'=⇡| . (7)

⇢f denotes the post-photoisomerization state. Maximiz-
ing the isomerization yield amounts to maximizing the
final state’s weight on the lower trans level, p�(⇡) :=
hE�(⇡)|⇢f |E�(⇡)i. In a more sophisticated model, the
thermal operation (7) decomposes as a sequence of ther-
mal operations. The angular DOF ' serves as a quan-
tum clock [69, 70, 78–85] as the molecule rotates at some
speed v. This sequence models a dissipative Landau-
Zener transition and is detailed in the Appendix. Third,
the molecule thermalizes to exp(��Hmol)/Zmol.

II. LIMITATIONS ON
PHOTOISOMERIZATION YIELD

The rotational thermal operation (7) leaves the elec-
tronic DOF in a state ⇢f . We bound the optimal iso-
merization yield ⇢�(⇡) via the resource-theory result of
thermomajorization. By “optimal isomerization yield,”
we mean the greatest value of p�(⇡) accessible after the
preparation of ⇢i.

Thermomajorization is a preorder that constrains the
populations’ evolutions under thermal operations [61,

64, 86–92]. Let H =
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for all ↵ = 1, 2, . . . , d, defines a piecewise-linear
curve. This Gibbs-rescaled Lorenz curve is denoted by
L(⇢,H)(x), wherein the abscissa x 2 [0, Z] and Z :=
P

d

j=1
exp(��Ej). Let (�, H) denote another system,

represented by a Lorenz curve L(�,H)(x). If the (⇢, H)
curve lies above or on the (�, H) curve at all x 2 [0, Z],
we say that (⇢, H) thermomajorizes (�, H). If and only if
(⇢, H) thermomajorizes (�, H) does there exist a thermal
operation that maps the first system’s energy diagonal to
the second system’s:

L(⇢,H)(x) � L(�,H)(x) 8x 2 [0, Z] , (8)

9T : T (D(⇢), H) = (D(�), H).

Relation (8) generalizes the second law of thermodynam-
ics to arbitrarily small systems and to single shots.

The curve L(⇢,H) illustrates the thermodynamic value
of (⇢, H) by codifying the system’s informational and en-
ergetic resourcefulness. If the energies di↵er, rj denotes
the probability that measuring H will yield Ej . The
more uniform {rj} is, the more uncertain the energy,
and the less information ⇢ encodes. If the Ej ’s equal
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FIG. 2: Thermomajorization bound on the
photoisomerization yield ⇢�(⇡) and comparisons with
equilibrium statistical mechanics. The red dashed curve
shows the predicted equilibrium yield, and the blue solid
curve shows the resource-theory bound. Possible optimal
yields shown in the gray region from an initially excited state
a), from an initial superposition b), and from an unexcited
state c). The insets illustrate the molecule’s energy levels.
The shaded dots show the initial state’s probability weights.

each other, {rj} equals the distribution over the degen-
eracies. In this case, L(⇢,H) illustrates the nonunifor-
mity of {rj} in a way that no reduced measure, such as
an entropy, can [61, 64, 65, 86–92]. In thermodynamics,
not only information, but also energy, has value. Rescal-
ing the probabilities rj with the inverse Boltzmann fac-
tors e�Ej incorporates energetic resourcefulness into the
information-theoretic L(⇢,H). These informational and
energetic resources mirror the two terms in the Helmholtz
free energy, F = E�TS. But the Helmholtz free energy
characterizes average, equilibrium properties of large sys-
tems. Thermomajorization governs arbitrary nonequilib-
rium states of arbitrarily small systems.

II A. Thermomajorization bound

To bound the optimal photoisomerization yield ⇢�(⇡),
we construct the Gibbs-rescaled Lorenz curves for (i) the
postexcitation state ⇢i and (ii) the post-rotation state
⇢f . We then solve for the greatest ⇢�(⇡) that enables the
photoexcited state to thermomajorize ⇢f :

L(⇢i⌦|'=0ih'=0|,Hmol)(x)

� L(⇢f⌦|'=⇡ih'=⇡|,Hmol)(x) 8x 2 [0, Zmol]. (9)

In the following, we consider only two allowable angles,
' = 0,⇡, which define the cis and trans states. We
assess how the bound depends on the cis-trans energy
gap �E := E�(⇡)�E�(0), expressed in units of 1/�. We
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FIG. 2: Thermomajorization bound on the
photoisomerization yield ⇢�(⇡) and comparisons with
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shows the predicted equilibrium yield, and the blue solid
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mity of {rj} in a way that no reduced measure, such as
an entropy, can [61, 64, 65, 86–92]. In thermodynamics,
not only information, but also energy, has value. Rescal-
ing the probabilities rj with the inverse Boltzmann fac-
tors e�Ej incorporates energetic resourcefulness into the
information-theoretic L(⇢,H). These informational and
energetic resources mirror the two terms in the Helmholtz
free energy, F = E�TS. But the Helmholtz free energy
characterizes average, equilibrium properties of large sys-
tems. Thermomajorization governs arbitrary nonequilib-
rium states of arbitrarily small systems.

II A. Thermomajorization bound

To bound the optimal photoisomerization yield ⇢�(⇡),
we construct the Gibbs-rescaled Lorenz curves for (i) the
postexcitation state ⇢i and (ii) the post-rotation state
⇢f . We then solve for the greatest ⇢�(⇡) that enables the
photoexcited state to thermomajorize ⇢f :
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' = 0,⇡, which define the cis and trans states. We
assess how the bound depends on the cis-trans energy
gap �E := E�(⇡)�E�(0), expressed in units of 1/�. We
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shows the predicted equilibrium yield, and the blue solid
curve shows the resource-theory bound. Possible optimal
yields shown in the gray region from an initially excited state
a), from an initial superposition b), and from an unexcited
state c). The insets illustrate the molecule’s energy levels.
The shaded dots show the initial state’s probability weights.

each other, {rj} equals the distribution over the degen-
eracies. In this case, L(⇢,H) illustrates the nonunifor-
mity of {rj} in a way that no reduced measure, such as
an entropy, can [61, 64, 65, 86–92]. In thermodynamics,
not only information, but also energy, has value. Rescal-
ing the probabilities rj with the inverse Boltzmann fac-
tors e�Ej incorporates energetic resourcefulness into the
information-theoretic L(⇢,H). These informational and
energetic resources mirror the two terms in the Helmholtz
free energy, F = E�TS. But the Helmholtz free energy
characterizes average, equilibrium properties of large sys-
tems. Thermomajorization governs arbitrary nonequilib-
rium states of arbitrarily small systems.

II A. Thermomajorization bound

To bound the optimal photoisomerization yield ⇢�(⇡),
we construct the Gibbs-rescaled Lorenz curves for (i) the
postexcitation state ⇢i and (ii) the post-rotation state
⇢f . We then solve for the greatest ⇢�(⇡) that enables the
photoexcited state to thermomajorize ⇢f :

L(⇢i⌦|'=0ih'=0|,Hmol)(x)

� L(⇢f⌦|'=⇡ih'=⇡|,Hmol)(x) 8x 2 [0, Zmol]. (9)

In the following, we consider only two allowable angles,
' = 0,⇡, which define the cis and trans states. We
assess how the bound depends on the cis-trans energy
gap �E := E�(⇡)�E�(0), expressed in units of 1/�. We
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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at a fixed angular coordinate. ⇢i denotes the new elec-
tronic state. Second, the molecule rotates:

⇢i ⌦ |'=0ih'=0| 7!TO ⇢f ⌦ |'=⇡ih'=⇡| . (7)

⇢f denotes the post-photoisomerization state. Maximiz-
ing the isomerization yield amounts to maximizing the
final state’s weight on the lower trans level, p�(⇡) :=
hE�(⇡)|⇢f |E�(⇡)i. In a more sophisticated model, the
thermal operation (7) decomposes as a sequence of ther-
mal operations. The angular DOF ' serves as a quan-
tum clock [69, 70, 78–85] as the molecule rotates at some
speed v. This sequence models a dissipative Landau-
Zener transition and is detailed in the Appendix. Third,
the molecule thermalizes to exp(��Hmol)/Zmol.

II. LIMITATIONS ON
PHOTOISOMERIZATION YIELD

The rotational thermal operation (7) leaves the elec-
tronic DOF in a state ⇢f . We bound the optimal iso-
merization yield ⇢�(⇡) via the resource-theory result of
thermomajorization. By “optimal isomerization yield,”
we mean the greatest value of p�(⇡) accessible after the
preparation of ⇢i.

Thermomajorization is a preorder that constrains the
populations’ evolutions under thermal operations [61,

64, 86–92]. Let H =
P

d

j=1
Ej |jihj| denote a Hamilto-

nian that governs a state ⇢ of energy diagonal D(⇢) :=P
j
|jihj|⇢|jihj| =

P
j
rj |jihj|. Consider rescaling the

probabilities with Boltzmann factors, rje�Ej , and order-
ing the products such that rj0e

�Ej0 � rk0e
�Ek0 for all j0 >

k
0. The convex hull of points

⇣P
↵

j0=1
e
��Ej0 ,

P
↵

j0=1
pj0

⌘
,

for all ↵ = 1, 2, . . . , d, defines a piecewise-linear
curve. This Gibbs-rescaled Lorenz curve is denoted by
L(⇢,H)(x), wherein the abscissa x 2 [0, Z] and Z :=
P

d

j=1
exp(��Ej). Let (�, H) denote another system,

represented by a Lorenz curve L(�,H)(x). If the (⇢, H)
curve lies above or on the (�, H) curve at all x 2 [0, Z],
we say that (⇢, H) thermomajorizes (�, H). If and only if
(⇢, H) thermomajorizes (�, H) does there exist a thermal
operation that maps the first system’s energy diagonal to
the second system’s:

L(⇢,H)(x) � L(�,H)(x) 8x 2 [0, Z] , (8)

9T : T (D(⇢), H) = (D(�), H).

Relation (8) generalizes the second law of thermodynam-
ics to arbitrarily small systems and to single shots.

The curve L(⇢,H) illustrates the thermodynamic value
of (⇢, H) by codifying the system’s informational and en-
ergetic resourcefulness. If the energies di↵er, rj denotes
the probability that measuring H will yield Ej . The
more uniform {rj} is, the more uncertain the energy,
and the less information ⇢ encodes. If the Ej ’s equal

Thermomajorization Equilibrium
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FIG. 2: Thermomajorization bound on the
photoisomerization yield ⇢�(⇡) and comparisons with
equilibrium statistical mechanics. The red dashed curve
shows the predicted equilibrium yield, and the blue solid
curve shows the resource-theory bound. Possible optimal
yields shown in the gray region from an initially excited state
a), from an initial superposition b), and from an unexcited
state c). The insets illustrate the molecule’s energy levels.
The shaded dots show the initial state’s probability weights.

each other, {rj} equals the distribution over the degen-
eracies. In this case, L(⇢,H) illustrates the nonunifor-
mity of {rj} in a way that no reduced measure, such as
an entropy, can [61, 64, 65, 86–92]. In thermodynamics,
not only information, but also energy, has value. Rescal-
ing the probabilities rj with the inverse Boltzmann fac-
tors e�Ej incorporates energetic resourcefulness into the
information-theoretic L(⇢,H). These informational and
energetic resources mirror the two terms in the Helmholtz
free energy, F = E�TS. But the Helmholtz free energy
characterizes average, equilibrium properties of large sys-
tems. Thermomajorization governs arbitrary nonequilib-
rium states of arbitrarily small systems.

II A. Thermomajorization bound

To bound the optimal photoisomerization yield ⇢�(⇡),
we construct the Gibbs-rescaled Lorenz curves for (i) the
postexcitation state ⇢i and (ii) the post-rotation state
⇢f . We then solve for the greatest ⇢�(⇡) that enables the
photoexcited state to thermomajorize ⇢f :

L(⇢i⌦|'=0ih'=0|,Hmol)(x)

� L(⇢f⌦|'=⇡ih'=⇡|,Hmol)(x) 8x 2 [0, Zmol]. (9)

In the following, we consider only two allowable angles,
' = 0,⇡, which define the cis and trans states. We
assess how the bound depends on the cis-trans energy
gap �E := E�(⇡)�E�(0), expressed in units of 1/�. We
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at a fixed angular coordinate. ⇢i denotes the new elec-
tronic state. Second, the molecule rotates:

⇢i ⌦ |'=0ih'=0| 7!TO ⇢f ⌦ |'=⇡ih'=⇡| . (7)

⇢f denotes the post-photoisomerization state. Maximiz-
ing the isomerization yield amounts to maximizing the
final state’s weight on the lower trans level, p�(⇡) :=
hE�(⇡)|⇢f |E�(⇡)i. In a more sophisticated model, the
thermal operation (7) decomposes as a sequence of ther-
mal operations. The angular DOF ' serves as a quan-
tum clock [69, 70, 78–85] as the molecule rotates at some
speed v. This sequence models a dissipative Landau-
Zener transition and is detailed in the Appendix. Third,
the molecule thermalizes to exp(��Hmol)/Zmol.

II. LIMITATIONS ON
PHOTOISOMERIZATION YIELD

The rotational thermal operation (7) leaves the elec-
tronic DOF in a state ⇢f . We bound the optimal iso-
merization yield ⇢�(⇡) via the resource-theory result of
thermomajorization. By “optimal isomerization yield,”
we mean the greatest value of p�(⇡) accessible after the
preparation of ⇢i.

Thermomajorization is a preorder that constrains the
populations’ evolutions under thermal operations [61,
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for all ↵ = 1, 2, . . . , d, defines a piecewise-linear
curve. This Gibbs-rescaled Lorenz curve is denoted by
L(⇢,H)(x), wherein the abscissa x 2 [0, Z] and Z :=
P

d

j=1
exp(��Ej). Let (�, H) denote another system,

represented by a Lorenz curve L(�,H)(x). If the (⇢, H)
curve lies above or on the (�, H) curve at all x 2 [0, Z],
we say that (⇢, H) thermomajorizes (�, H). If and only if
(⇢, H) thermomajorizes (�, H) does there exist a thermal
operation that maps the first system’s energy diagonal to
the second system’s:

L(⇢,H)(x) � L(�,H)(x) 8x 2 [0, Z] , (8)

9T : T (D(⇢), H) = (D(�), H).

Relation (8) generalizes the second law of thermodynam-
ics to arbitrarily small systems and to single shots.

The curve L(⇢,H) illustrates the thermodynamic value
of (⇢, H) by codifying the system’s informational and en-
ergetic resourcefulness. If the energies di↵er, rj denotes
the probability that measuring H will yield Ej . The
more uniform {rj} is, the more uncertain the energy,
and the less information ⇢ encodes. If the Ej ’s equal
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FIG. 2: Thermomajorization bound on the
photoisomerization yield ⇢�(⇡) and comparisons with
equilibrium statistical mechanics. The red dashed curve
shows the predicted equilibrium yield, and the blue solid
curve shows the resource-theory bound. Possible optimal
yields shown in the gray region from an initially excited state
a), from an initial superposition b), and from an unexcited
state c). The insets illustrate the molecule’s energy levels.
The shaded dots show the initial state’s probability weights.

each other, {rj} equals the distribution over the degen-
eracies. In this case, L(⇢,H) illustrates the nonunifor-
mity of {rj} in a way that no reduced measure, such as
an entropy, can [61, 64, 65, 86–92]. In thermodynamics,
not only information, but also energy, has value. Rescal-
ing the probabilities rj with the inverse Boltzmann fac-
tors e�Ej incorporates energetic resourcefulness into the
information-theoretic L(⇢,H). These informational and
energetic resources mirror the two terms in the Helmholtz
free energy, F = E�TS. But the Helmholtz free energy
characterizes average, equilibrium properties of large sys-
tems. Thermomajorization governs arbitrary nonequilib-
rium states of arbitrarily small systems.

II A. Thermomajorization bound

To bound the optimal photoisomerization yield ⇢�(⇡),
we construct the Gibbs-rescaled Lorenz curves for (i) the
postexcitation state ⇢i and (ii) the post-rotation state
⇢f . We then solve for the greatest ⇢�(⇡) that enables the
photoexcited state to thermomajorize ⇢f :

L(⇢i⌦|'=0ih'=0|,Hmol)(x)

� L(⇢f⌦|'=⇡ih'=⇡|,Hmol)(x) 8x 2 [0, Zmol]. (9)

In the following, we consider only two allowable angles,
' = 0,⇡, which define the cis and trans states. We
assess how the bound depends on the cis-trans energy
gap �E := E�(⇡)�E�(0), expressed in units of 1/�. We
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at a fixed angular coordinate. ⇢i denotes the new elec-
tronic state. Second, the molecule rotates:

⇢i ⌦ |'=0ih'=0| 7!TO ⇢f ⌦ |'=⇡ih'=⇡| . (7)

⇢f denotes the post-photoisomerization state. Maximiz-
ing the isomerization yield amounts to maximizing the
final state’s weight on the lower trans level, p�(⇡) :=
hE�(⇡)|⇢f |E�(⇡)i. In a more sophisticated model, the
thermal operation (7) decomposes as a sequence of ther-
mal operations. The angular DOF ' serves as a quan-
tum clock [69, 70, 78–85] as the molecule rotates at some
speed v. This sequence models a dissipative Landau-
Zener transition and is detailed in the Appendix. Third,
the molecule thermalizes to exp(��Hmol)/Zmol.

II. LIMITATIONS ON
PHOTOISOMERIZATION YIELD

The rotational thermal operation (7) leaves the elec-
tronic DOF in a state ⇢f . We bound the optimal iso-
merization yield ⇢�(⇡) via the resource-theory result of
thermomajorization. By “optimal isomerization yield,”
we mean the greatest value of p�(⇡) accessible after the
preparation of ⇢i.

Thermomajorization is a preorder that constrains the
populations’ evolutions under thermal operations [61,

64, 86–92]. Let H =
P

d

j=1
Ej |jihj| denote a Hamilto-

nian that governs a state ⇢ of energy diagonal D(⇢) :=P
j
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for all ↵ = 1, 2, . . . , d, defines a piecewise-linear
curve. This Gibbs-rescaled Lorenz curve is denoted by
L(⇢,H)(x), wherein the abscissa x 2 [0, Z] and Z :=
P

d

j=1
exp(��Ej). Let (�, H) denote another system,

represented by a Lorenz curve L(�,H)(x). If the (⇢, H)
curve lies above or on the (�, H) curve at all x 2 [0, Z],
we say that (⇢, H) thermomajorizes (�, H). If and only if
(⇢, H) thermomajorizes (�, H) does there exist a thermal
operation that maps the first system’s energy diagonal to
the second system’s:

L(⇢,H)(x) � L(�,H)(x) 8x 2 [0, Z] , (8)

9T : T (D(⇢), H) = (D(�), H).

Relation (8) generalizes the second law of thermodynam-
ics to arbitrarily small systems and to single shots.

The curve L(⇢,H) illustrates the thermodynamic value
of (⇢, H) by codifying the system’s informational and en-
ergetic resourcefulness. If the energies di↵er, rj denotes
the probability that measuring H will yield Ej . The
more uniform {rj} is, the more uncertain the energy,
and the less information ⇢ encodes. If the Ej ’s equal
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FIG. 2: Thermomajorization bound on the
photoisomerization yield ⇢�(⇡) and comparisons with
equilibrium statistical mechanics. The red dashed curve
shows the predicted equilibrium yield, and the blue solid
curve shows the resource-theory bound. Possible optimal
yields shown in the gray region from an initially excited state
a), from an initial superposition b), and from an unexcited
state c). The insets illustrate the molecule’s energy levels.
The shaded dots show the initial state’s probability weights.

each other, {rj} equals the distribution over the degen-
eracies. In this case, L(⇢,H) illustrates the nonunifor-
mity of {rj} in a way that no reduced measure, such as
an entropy, can [61, 64, 65, 86–92]. In thermodynamics,
not only information, but also energy, has value. Rescal-
ing the probabilities rj with the inverse Boltzmann fac-
tors e�Ej incorporates energetic resourcefulness into the
information-theoretic L(⇢,H). These informational and
energetic resources mirror the two terms in the Helmholtz
free energy, F = E�TS. But the Helmholtz free energy
characterizes average, equilibrium properties of large sys-
tems. Thermomajorization governs arbitrary nonequilib-
rium states of arbitrarily small systems.

II A. Thermomajorization bound

To bound the optimal photoisomerization yield ⇢�(⇡),
we construct the Gibbs-rescaled Lorenz curves for (i) the
postexcitation state ⇢i and (ii) the post-rotation state
⇢f . We then solve for the greatest ⇢�(⇡) that enables the
photoexcited state to thermomajorize ⇢f :

L(⇢i⌦|'=0ih'=0|,Hmol)(x)

� L(⇢f⌦|'=⇡ih'=⇡|,Hmol)(x) 8x 2 [0, Zmol]. (9)

In the following, we consider only two allowable angles,
' = 0,⇡, which define the cis and trans states. We
assess how the bound depends on the cis-trans energy
gap �E := E�(⇡)�E�(0), expressed in units of 1/�. We
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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at a fixed angular coordinate. ⇢i denotes the new elec-
tronic state. Second, the molecule rotates:

⇢i ⌦ |'=0ih'=0| 7!TO ⇢f ⌦ |'=⇡ih'=⇡| . (7)

⇢f denotes the post-photoisomerization state. Maximiz-
ing the isomerization yield amounts to maximizing the
final state’s weight on the lower trans level, p�(⇡) :=
hE�(⇡)|⇢f |E�(⇡)i. In a more sophisticated model, the
thermal operation (7) decomposes as a sequence of ther-
mal operations. The angular DOF ' serves as a quan-
tum clock [69, 70, 78–85] as the molecule rotates at some
speed v. This sequence models a dissipative Landau-
Zener transition and is detailed in the Appendix. Third,
the molecule thermalizes to exp(��Hmol)/Zmol.
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The rotational thermal operation (7) leaves the elec-
tronic DOF in a state ⇢f . We bound the optimal iso-
merization yield ⇢�(⇡) via the resource-theory result of
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we mean the greatest value of p�(⇡) accessible after the
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for all ↵ = 1, 2, . . . , d, defines a piecewise-linear
curve. This Gibbs-rescaled Lorenz curve is denoted by
L(⇢,H)(x), wherein the abscissa x 2 [0, Z] and Z :=
P

d

j=1
exp(��Ej). Let (�, H) denote another system,

represented by a Lorenz curve L(�,H)(x). If the (⇢, H)
curve lies above or on the (�, H) curve at all x 2 [0, Z],
we say that (⇢, H) thermomajorizes (�, H). If and only if
(⇢, H) thermomajorizes (�, H) does there exist a thermal
operation that maps the first system’s energy diagonal to
the second system’s:

L(⇢,H)(x) � L(�,H)(x) 8x 2 [0, Z] , (8)

9T : T (D(⇢), H) = (D(�), H).

Relation (8) generalizes the second law of thermodynam-
ics to arbitrarily small systems and to single shots.

The curve L(⇢,H) illustrates the thermodynamic value
of (⇢, H) by codifying the system’s informational and en-
ergetic resourcefulness. If the energies di↵er, rj denotes
the probability that measuring H will yield Ej . The
more uniform {rj} is, the more uncertain the energy,
and the less information ⇢ encodes. If the Ej ’s equal
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FIG. 2: Thermomajorization bound on the
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shows the predicted equilibrium yield, and the blue solid
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each other, {rj} equals the distribution over the degen-
eracies. In this case, L(⇢,H) illustrates the nonunifor-
mity of {rj} in a way that no reduced measure, such as
an entropy, can [61, 64, 65, 86–92]. In thermodynamics,
not only information, but also energy, has value. Rescal-
ing the probabilities rj with the inverse Boltzmann fac-
tors e�Ej incorporates energetic resourcefulness into the
information-theoretic L(⇢,H). These informational and
energetic resources mirror the two terms in the Helmholtz
free energy, F = E�TS. But the Helmholtz free energy
characterizes average, equilibrium properties of large sys-
tems. Thermomajorization governs arbitrary nonequilib-
rium states of arbitrarily small systems.
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To bound the optimal photoisomerization yield ⇢�(⇡),
we construct the Gibbs-rescaled Lorenz curves for (i) the
postexcitation state ⇢i and (ii) the post-rotation state
⇢f . We then solve for the greatest ⇢�(⇡) that enables the
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� L(⇢f⌦|'=⇡ih'=⇡|,Hmol)(x) 8x 2 [0, Zmol]. (9)

In the following, we consider only two allowable angles,
' = 0,⇡, which define the cis and trans states. We
assess how the bound depends on the cis-trans energy
gap �E := E�(⇡)�E�(0), expressed in units of 1/�. We
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more uniform {rj} is, the more uncertain the energy,
and the less information ⇢ encodes. If the Ej ’s equal

Thermomajorization Equilibrium
a) b) c)

FIG. 2: Thermomajorization bound on the
photoisomerization yield ⇢�(⇡) and comparisons with
equilibrium statistical mechanics. The red dashed curve
shows the predicted equilibrium yield, and the blue solid
curve shows the resource-theory bound. Possible optimal
yields shown in the gray region from an initially excited state
a), from an initial superposition b), and from an unexcited
state c). The insets illustrate the molecule’s energy levels.
The shaded dots show the initial state’s probability weights.

each other, {rj} equals the distribution over the degen-
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mity of {rj} in a way that no reduced measure, such as
an entropy, can [61, 64, 65, 86–92]. In thermodynamics,
not only information, but also energy, has value. Rescal-
ing the probabilities rj with the inverse Boltzmann fac-
tors e�Ej incorporates energetic resourcefulness into the
information-theoretic L(⇢,H). These informational and
energetic resources mirror the two terms in the Helmholtz
free energy, F = E�TS. But the Helmholtz free energy
characterizes average, equilibrium properties of large sys-
tems. Thermomajorization governs arbitrary nonequilib-
rium states of arbitrarily small systems.

II A. Thermomajorization bound

To bound the optimal photoisomerization yield ⇢�(⇡),
we construct the Gibbs-rescaled Lorenz curves for (i) the
postexcitation state ⇢i and (ii) the post-rotation state
⇢f . We then solve for the greatest ⇢�(⇡) that enables the
photoexcited state to thermomajorize ⇢f :
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at a fixed angular coordinate. ⇢i denotes the new elec-
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⇢f denotes the post-photoisomerization state. Maximiz-
ing the isomerization yield amounts to maximizing the
final state’s weight on the lower trans level, p�(⇡) :=
hE�(⇡)|⇢f |E�(⇡)i. In a more sophisticated model, the
thermal operation (7) decomposes as a sequence of ther-
mal operations. The angular DOF ' serves as a quan-
tum clock [69, 70, 78–85] as the molecule rotates at some
speed v. This sequence models a dissipative Landau-
Zener transition and is detailed in the Appendix. Third,
the molecule thermalizes to exp(��Hmol)/Zmol.
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(⇢, H) thermomajorizes (�, H) does there exist a thermal
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ics to arbitrarily small systems and to single shots.
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each other, {rj} equals the distribution over the degen-
eracies. In this case, L(⇢,H) illustrates the nonunifor-
mity of {rj} in a way that no reduced measure, such as
an entropy, can [61, 64, 65, 86–92]. In thermodynamics,
not only information, but also energy, has value. Rescal-
ing the probabilities rj with the inverse Boltzmann fac-
tors e�Ej incorporates energetic resourcefulness into the
information-theoretic L(⇢,H). These informational and
energetic resources mirror the two terms in the Helmholtz
free energy, F = E�TS. But the Helmholtz free energy
characterizes average, equilibrium properties of large sys-
tems. Thermomajorization governs arbitrary nonequilib-
rium states of arbitrarily small systems.

II A. Thermomajorization bound

To bound the optimal photoisomerization yield ⇢�(⇡),
we construct the Gibbs-rescaled Lorenz curves for (i) the
postexcitation state ⇢i and (ii) the post-rotation state
⇢f . We then solve for the greatest ⇢�(⇡) that enables the
photoexcited state to thermomajorize ⇢f :
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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represented by a Lorenz curve L(�,H)(x). If the (⇢, H)
curve lies above or on the (�, H) curve at all x 2 [0, Z],
we say that (⇢, H) thermomajorizes (�, H). If and only if
(⇢, H) thermomajorizes (�, H) does there exist a thermal
operation that maps the first system’s energy diagonal to
the second system’s:

L(⇢,H)(x) � L(�,H)(x) 8x 2 [0, Z] , (8)

9T : T (D(⇢), H) = (D(�), H).

Relation (8) generalizes the second law of thermodynam-
ics to arbitrarily small systems and to single shots.

The curve L(⇢,H) illustrates the thermodynamic value
of (⇢, H) by codifying the system’s informational and en-
ergetic resourcefulness. If the energies di↵er, rj denotes
the probability that measuring H will yield Ej . The
more uniform {rj} is, the more uncertain the energy,
and the less information ⇢ encodes. If the Ej ’s equal
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FIG. 2: Thermomajorization bound on the
photoisomerization yield ⇢�(⇡) and comparisons with
equilibrium statistical mechanics. The red dashed curve
shows the predicted equilibrium yield, and the blue solid
curve shows the resource-theory bound. Possible optimal
yields shown in the gray region from an initially excited state
a), from an initial superposition b), and from an unexcited
state c). The insets illustrate the molecule’s energy levels.
The shaded dots show the initial state’s probability weights.

each other, {rj} equals the distribution over the degen-
eracies. In this case, L(⇢,H) illustrates the nonunifor-
mity of {rj} in a way that no reduced measure, such as
an entropy, can [61, 64, 65, 86–92]. In thermodynamics,
not only information, but also energy, has value. Rescal-
ing the probabilities rj with the inverse Boltzmann fac-
tors e�Ej incorporates energetic resourcefulness into the
information-theoretic L(⇢,H). These informational and
energetic resources mirror the two terms in the Helmholtz
free energy, F = E�TS. But the Helmholtz free energy
characterizes average, equilibrium properties of large sys-
tems. Thermomajorization governs arbitrary nonequilib-
rium states of arbitrarily small systems.

II A. Thermomajorization bound

To bound the optimal photoisomerization yield ⇢�(⇡),
we construct the Gibbs-rescaled Lorenz curves for (i) the
postexcitation state ⇢i and (ii) the post-rotation state
⇢f . We then solve for the greatest ⇢�(⇡) that enables the
photoexcited state to thermomajorize ⇢f :

L(⇢i⌦|'=0ih'=0|,Hmol)(x)

� L(⇢f⌦|'=⇡ih'=⇡|,Hmol)(x) 8x 2 [0, Zmol]. (9)

In the following, we consider only two allowable angles,
' = 0,⇡, which define the cis and trans states. We
assess how the bound depends on the cis-trans energy
gap �E := E�(⇡)�E�(0), expressed in units of 1/�. We
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at a fixed angular coordinate. ⇢i denotes the new elec-
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⇢i ⌦ |'=0ih'=0| 7!TO ⇢f ⌦ |'=⇡ih'=⇡| . (7)

⇢f denotes the post-photoisomerization state. Maximiz-
ing the isomerization yield amounts to maximizing the
final state’s weight on the lower trans level, p�(⇡) :=
hE�(⇡)|⇢f |E�(⇡)i. In a more sophisticated model, the
thermal operation (7) decomposes as a sequence of ther-
mal operations. The angular DOF ' serves as a quan-
tum clock [69, 70, 78–85] as the molecule rotates at some
speed v. This sequence models a dissipative Landau-
Zener transition and is detailed in the Appendix. Third,
the molecule thermalizes to exp(��Hmol)/Zmol.

II. LIMITATIONS ON
PHOTOISOMERIZATION YIELD

The rotational thermal operation (7) leaves the elec-
tronic DOF in a state ⇢f . We bound the optimal iso-
merization yield ⇢�(⇡) via the resource-theory result of
thermomajorization. By “optimal isomerization yield,”
we mean the greatest value of p�(⇡) accessible after the
preparation of ⇢i.

Thermomajorization is a preorder that constrains the
populations’ evolutions under thermal operations [61,
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L(⇢,H)(x), wherein the abscissa x 2 [0, Z] and Z :=
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exp(��Ej). Let (�, H) denote another system,

represented by a Lorenz curve L(�,H)(x). If the (⇢, H)
curve lies above or on the (�, H) curve at all x 2 [0, Z],
we say that (⇢, H) thermomajorizes (�, H). If and only if
(⇢, H) thermomajorizes (�, H) does there exist a thermal
operation that maps the first system’s energy diagonal to
the second system’s:

L(⇢,H)(x) � L(�,H)(x) 8x 2 [0, Z] , (8)

9T : T (D(⇢), H) = (D(�), H).

Relation (8) generalizes the second law of thermodynam-
ics to arbitrarily small systems and to single shots.

The curve L(⇢,H) illustrates the thermodynamic value
of (⇢, H) by codifying the system’s informational and en-
ergetic resourcefulness. If the energies di↵er, rj denotes
the probability that measuring H will yield Ej . The
more uniform {rj} is, the more uncertain the energy,
and the less information ⇢ encodes. If the Ej ’s equal
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FIG. 2: Thermomajorization bound on the
photoisomerization yield ⇢�(⇡) and comparisons with
equilibrium statistical mechanics. The red dashed curve
shows the predicted equilibrium yield, and the blue solid
curve shows the resource-theory bound. Possible optimal
yields shown in the gray region from an initially excited state
a), from an initial superposition b), and from an unexcited
state c). The insets illustrate the molecule’s energy levels.
The shaded dots show the initial state’s probability weights.
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tors e�Ej incorporates energetic resourcefulness into the
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we say that (⇢, H) thermomajorizes (�, H). If and only if
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ergetic resourcefulness. If the energies di↵er, rj denotes
the probability that measuring H will yield Ej . The
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shows the predicted equilibrium yield, and the blue solid
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The shaded dots show the initial state’s probability weights.

each other, {rj} equals the distribution over the degen-
eracies. In this case, L(⇢,H) illustrates the nonunifor-
mity of {rj} in a way that no reduced measure, such as
an entropy, can [61, 64, 65, 86–92]. In thermodynamics,
not only information, but also energy, has value. Rescal-
ing the probabilities rj with the inverse Boltzmann fac-
tors e�Ej incorporates energetic resourcefulness into the
information-theoretic L(⇢,H). These informational and
energetic resources mirror the two terms in the Helmholtz
free energy, F = E�TS. But the Helmholtz free energy
characterizes average, equilibrium properties of large sys-
tems. Thermomajorization governs arbitrary nonequilib-
rium states of arbitrarily small systems.

II A. Thermomajorization bound

To bound the optimal photoisomerization yield ⇢�(⇡),
we construct the Gibbs-rescaled Lorenz curves for (i) the
postexcitation state ⇢i and (ii) the post-rotation state
⇢f . We then solve for the greatest ⇢�(⇡) that enables the
photoexcited state to thermomajorize ⇢f :

L(⇢i⌦|'=0ih'=0|,Hmol)(x)

� L(⇢f⌦|'=⇡ih'=⇡|,Hmol)(x) 8x 2 [0, Zmol]. (9)

In the following, we consider only two allowable angles,
' = 0,⇡, which define the cis and trans states. We
assess how the bound depends on the cis-trans energy
gap �E := E�(⇡)�E�(0), expressed in units of 1/�. We
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at a fixed angular coordinate. ⇢i denotes the new elec-
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⇢i ⌦ |'=0ih'=0| 7!TO ⇢f ⌦ |'=⇡ih'=⇡| . (7)

⇢f denotes the post-photoisomerization state. Maximiz-
ing the isomerization yield amounts to maximizing the
final state’s weight on the lower trans level, p�(⇡) :=
hE�(⇡)|⇢f |E�(⇡)i. In a more sophisticated model, the
thermal operation (7) decomposes as a sequence of ther-
mal operations. The angular DOF ' serves as a quan-
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speed v. This sequence models a dissipative Landau-
Zener transition and is detailed in the Appendix. Third,
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preparation of ⇢i.
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curve. This Gibbs-rescaled Lorenz curve is denoted by
L(⇢,H)(x), wherein the abscissa x 2 [0, Z] and Z :=
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exp(��Ej). Let (�, H) denote another system,

represented by a Lorenz curve L(�,H)(x). If the (⇢, H)
curve lies above or on the (�, H) curve at all x 2 [0, Z],
we say that (⇢, H) thermomajorizes (�, H). If and only if
(⇢, H) thermomajorizes (�, H) does there exist a thermal
operation that maps the first system’s energy diagonal to
the second system’s:

L(⇢,H)(x) � L(�,H)(x) 8x 2 [0, Z] , (8)

9T : T (D(⇢), H) = (D(�), H).

Relation (8) generalizes the second law of thermodynam-
ics to arbitrarily small systems and to single shots.

The curve L(⇢,H) illustrates the thermodynamic value
of (⇢, H) by codifying the system’s informational and en-
ergetic resourcefulness. If the energies di↵er, rj denotes
the probability that measuring H will yield Ej . The
more uniform {rj} is, the more uncertain the energy,
and the less information ⇢ encodes. If the Ej ’s equal
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FIG. 2: Thermomajorization bound on the
photoisomerization yield ⇢�(⇡) and comparisons with
equilibrium statistical mechanics. The red dashed curve
shows the predicted equilibrium yield, and the blue solid
curve shows the resource-theory bound. Possible optimal
yields shown in the gray region from an initially excited state
a), from an initial superposition b), and from an unexcited
state c). The insets illustrate the molecule’s energy levels.
The shaded dots show the initial state’s probability weights.

each other, {rj} equals the distribution over the degen-
eracies. In this case, L(⇢,H) illustrates the nonunifor-
mity of {rj} in a way that no reduced measure, such as
an entropy, can [61, 64, 65, 86–92]. In thermodynamics,
not only information, but also energy, has value. Rescal-
ing the probabilities rj with the inverse Boltzmann fac-
tors e�Ej incorporates energetic resourcefulness into the
information-theoretic L(⇢,H). These informational and
energetic resources mirror the two terms in the Helmholtz
free energy, F = E�TS. But the Helmholtz free energy
characterizes average, equilibrium properties of large sys-
tems. Thermomajorization governs arbitrary nonequilib-
rium states of arbitrarily small systems.

II A. Thermomajorization bound

To bound the optimal photoisomerization yield ⇢�(⇡),
we construct the Gibbs-rescaled Lorenz curves for (i) the
postexcitation state ⇢i and (ii) the post-rotation state
⇢f . We then solve for the greatest ⇢�(⇡) that enables the
photoexcited state to thermomajorize ⇢f :

L(⇢i⌦|'=0ih'=0|,Hmol)(x)

� L(⇢f⌦|'=⇡ih'=⇡|,Hmol)(x) 8x 2 [0, Zmol]. (9)

In the following, we consider only two allowable angles,
' = 0,⇡, which define the cis and trans states. We
assess how the bound depends on the cis-trans energy
gap �E := E�(⇡)�E�(0), expressed in units of 1/�. We
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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each other, {rj} equals the distribution over the degen-
eracies. In this case, L(⇢,H) illustrates the nonunifor-
mity of {rj} in a way that no reduced measure, such as
an entropy, can [61, 64, 65, 86–92]. In thermodynamics,
not only information, but also energy, has value. Rescal-
ing the probabilities rj with the inverse Boltzmann fac-
tors e�Ej incorporates energetic resourcefulness into the
information-theoretic L(⇢,H). These informational and
energetic resources mirror the two terms in the Helmholtz
free energy, F = E�TS. But the Helmholtz free energy
characterizes average, equilibrium properties of large sys-
tems. Thermomajorization governs arbitrary nonequilib-
rium states of arbitrarily small systems.

II A. Thermomajorization bound

To bound the optimal photoisomerization yield ⇢�(⇡),
we construct the Gibbs-rescaled Lorenz curves for (i) the
postexcitation state ⇢i and (ii) the post-rotation state
⇢f . We then solve for the greatest ⇢�(⇡) that enables the
photoexcited state to thermomajorize ⇢f :

L(⇢i⌦|'=0ih'=0|,Hmol)(x)

� L(⇢f⌦|'=⇡ih'=⇡|,Hmol)(x) 8x 2 [0, Zmol]. (9)

In the following, we consider only two allowable angles,
' = 0,⇡, which define the cis and trans states. We
assess how the bound depends on the cis-trans energy
gap �E := E�(⇡)�E�(0), expressed in units of 1/�. We
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• We’ve derived fundamental thermodynamic limitations  
on the molecule’s switching probability

• Coherences can’t help, in the absence of external resources.

• We can understand the bound through energetic and informational resources.
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).

ℰ+ − ℰ−• Not simply
|ℰ+⟩

|ℰ−⟩

• Quantified with a “one-shot entropy”



More applications of resource-theory results to the photoisomer

• Minimal work required to photoexcite the molecule in a single shot 2

E1 cis

trans

E
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the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).
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In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
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for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
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eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
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tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
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source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.
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and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
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isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used
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ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
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cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
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tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used
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ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).
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FOR THE MOLECULAR SYSTEM
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bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
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NYH and Limmer, arXiv:1811.06551 (2018).

• How to model your favorite system



Recap

•  

• Thermodynamic resource theories

• “Second laws” of thermodynamics

• Results

The photoisomer

2

E1 cis

trans

E

FIG. 1: Two representative potential-energy surfaces for
the ground and excited electronic states of an isomer, as well
as the cis and trans configurations associated with the
ground-state minima. The black curves represent adiabatic
states, or instantaneous energy eigenstates. The red curves
represent diabatic states, which approximately equal
adiabatic states at ' = 0,⇡.

excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
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R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
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copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).

I. RESOURCE-THEORY MODEL
FOR THE MOLECULAR SYSTEM

In this section, we review the resource theory that
models heat exchanges. We then model the molecule,
bath, light source, and photoisomerization process within
the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
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We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.
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excited electronic states can lack energy barriers. If ex-
cited by light, therefore, the molecule has the opportunity
to change configurations while relaxing, in contact with
its environment, back to the lower electronic level. The
probability of changing conformation during relaxation
is called the “photoisomerization yield.”

The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
tions,” and the systems accessible, called “free systems.”
Consider, as an example, a thermodynamic setting in
which systems exchange heat with a bath at a fixed tem-
perature. The first law of thermodynamics constrains
processes to conserve energy, and only thermal states can
be accessed easily. The corresponding resource theory’s
free operations are called “thermal operations.” All non-
free systems, e.g., systems not in states thermal with re-
spect to the environment’s temperature, are “resources.”
Resources have value because they can fuel tasks such as
work extraction. Resource theories originated to quantify
entanglement and to clarify which QI-processing tasks
entanglement could facilitate [49]. Since then, resource
theories have been developed for other valuable quanti-
ties, including reference frames [50–55], randomness used

in cryptography [47], coherence [56–58], “magic states”
used in quantum computation [59], and thermodynam-
ics [60–68].
Using a resource theory, one studies which systems

R can transform into systems S under free operations
(R 7! S); which cannot (R 67! S); how much of a re-
source W , such as work, is required to facilitate an oth-
erwise impossible transformation (R + W 7! S despite
R 67! S); how many copies of S can be extracted from m

copies of R; and what, generally, is possible and impossi-
ble. Results govern arbitrarily small systems and coher-
ent quantum states. In thermodynamic resource theo-
ries, averaging in a large-system limit reproduces results
consistent with expectations from statistical mechanics.
Hence resource theories o↵er the potential for formulat-
ing sharp, general statements about complex, quantum
systems. We harness this potential for molecules under-
going photoisomerization.

The paper is organized as follows. First, we review the
resource theory that models heat exchanges. We then
model the molecule within the resource theory (Sec. I).
We bound the isomerization yield by applying the re-
source theory’s thermomajorization preorder (Sec. II).
The yield is tightly constrained, we find, if the light
source barely excites the molecule, such that mainly
thermal fluctuations drive conformational changes. If
the light source fully excites the molecule to one high-
energy eigenstate, thermomajorization constrains the
yield weakly. In this case, kinetic fine-tuning can result
in a perfect, unit photoisomerization yield.

We next quantify the energy coherence gained by the
molecule during photoisomerization (Sec. III). We quan-
tify the coherence with resource-theory monotones, func-
tions that decrease monotonically under free operations
and that quantify a system’s value. Specifically, we char-
acterize the postisomerization state’s coherence with the
Fisher information relative to the Hamiltonian. This co-
herence emerges after a dissipative Landau-Zener evolu-
tion, which we model within the resource theory. Elec-
tronic coherence, we argue further, cannot increase the
isomerization in the absence of extra resources. Fi-
nally, we calculate two work quantities (Sec. IV): (i) the
minimal work required for a light source to excite the
molecule and (ii) the work extractable from the coher-
ence in the molecule’s postisomerization state. Work can
be extracted in case (ii) if molecules interact and obey
indistinguishable-particle statistics. We conclude with
this program’s significance and opportunities (Sec. V).
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the resource theory. To specify a system in the resource
theory for heat exchanges, one specifies a tuple (⇢, H).
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The yield is di�cult to predict for several reasons.
First, dynamical factors determine the yield over inter-
mediate time scales. These times exceed the time needed
for the electronic DOF to relax to its ground state but
are shorter than the time over which the whole molecule
thermalizes. This intermediacy precludes straightfor-
ward thermodynamic statements. Second, the postex-
citation evolution involves nonadiabaticity [45], dissipa-
tion [45], and rare bath fluctuations [46]. Hence studying
the evolution computationally is di�cult, and few gen-
eral guiding principles exist. We need a toolkit for de-
riving thermodynamic-style bounds on photoisomeriza-
tion. These bounds should incorporate the coupling of
quantum mechanical DOFs with small scales and ther-
mal fluctuations. To construct such bounds, we use a
resource theory.

Resource theories are simple models developed in QI
theory [47, 48]. They are relevant when restrictions con-
strain the processes that can occur, called “free opera-
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