SIMPLE BOUNDS ON FAR-FROM-EQUILIBRIUM MACHINES,
FROM QUANTUM INFORMATION THEORY

NICOLE YUNGER HALPERN

Harvard-Smithsonian ITAMP
(Institute for Theoretical Atomic, Molecular, and Optical Physics)
Harvard University Department of Physics

NYH and Limmer, arXiv:1811.06551 (2018).

"Exploring Open Quantum Systems in Quantum Simulators” conference, KITP, 4/19 e










——

The photoisomer




The photoisomer

Q_0O




——

The photoisomer

Q_0O




——

The photoisomer

Q_0O




——

The photoisomer

b

Cis
OO




——

The photoisomer

b

IS
0°




——

The photoisomer

Cic Trani
0° 180




Photoisomers surface across nature and technologies.




Photoisomers surface across nature and technologies.

e Retinal




Photoisomers surface across nature and technologies.

e Retinal

o Kucharski et al., Nat.
Chem. 6, 441 (2014).




Photoisomers surface across nature and technologies.

e Retinal

o Kucharski et al., Nat.
Chem. 6, 441 (2014).




Photoisomers surface across nature and technologies.

e Retinal

o Kucharski et al., Nat.
Chem. 6, 441 (2014).




Photoisomers surface across nature and technologies.

U




Photoisomers surface across nature and technologies.

U

Worth asking,
"How effectively can these molecular switches switch?”




Photoisomers surface across nature and technologies.

U

Worth asking,
"How effectively can these molecular switches switch?”

o

T — T —

But photoisomers are small, quantum, and far from equilibrium.




Photoisomers surface across nature and technologies.

U

Worth asking,
"How effectively can these molecular switches switch?”

o

T — T —

But photoisomers are small, quantum, and far from equilibrium.

\

Headway seems to require assumptions,




Photoisomers surface across nature and technologies.

U

Worth asking,
"How effectively can these molecular switches switch?”

o

T — T —

But photoisomers are small, quantum, and far from equilibrium.

\

Headway seems to require assumptions,
but the usual ones can be violated.
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-Style: abstract quantum information theory — Theorem
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Evaluate resource-theory theorems on the photoisomer. —» Corollary
Theorem
Theorem
Lemma

Bound the switching probability, and characterize coherence’s role in the switching.

NYH and Limmer, arXiv:1811.06551 (2018).
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Resource-theory background

Results
« Model photoisomer in resource theory

 Bound photoisomerization probability
» Coherence can'tincrease the probability, in the absence of external resources.

What can thermodynamic resource theories do for you?
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180°

Hahn and Stock, J. Phys. Chem. (2000 and 2002).
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o Simple, information-theoretic models
for any situation in which only certain systems are accessible

and only certain opeiations can be performed \

free operations free systems *0)

o Example: conserve energy
(obey the first law)

o Example (thermodynamicsin a
temperature-Tatmosphere):

e_H/(kBT)/Z
» Everything not free is a resource.

. Example: athermal states —» p # e~ H&el)/7
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How to model your favorite system in a thermodynamic resource theory

o Earliest literature: Lieb and Yngvason, Amer. Math. Soc. 45, 5(1998).
Janzing et al., Int. J. Theor. Phys. 39, 12 (2000).
Brandao et al., Phys. Rev. Lett. 111, 250404 (2013).

« How to specify a system: %7, (p, H)

1

e Agentgiven access to bath at g =
ke T
e

PHg
o Free states: $O thermal relative to f — > , Hy




Free operations

 Thermal operations




Free operations

 Thermal operations

o Tend to thermalize states




Free operations

 Thermal operations

o Tend to thermalize states

o Each free operation consists of | et
SIMPLE

STEPS




Free operations

 Thermal operations

o Tend to thermalize states

o Each free operation consists of | et
SIMPLE

STEPS

T—

1) Draw any free state from the bath.




Free operations

 Thermal operations

o Tend to thermalize states

o Each free operation consists of | et
SIMPLE

STEPS

T—

1) Draw any free state from the bath.

2) Perform any unitary that conserves the total energy.

\-’ U - e_iHintt




Free operations

 Thermal operations

o Tend to thermalize states

o Each free operation consists of | et
SIMPLE

STEPS

T—

1) Draw any free state from the bath.

2) Perform any unitary that conserves the total energy.

\-’ U - e_iHintt

3) Discard a subsystem.
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Free operations

. (p,H) - (Tra<U UT>, H+HB—Ha)

« [UsHi 1 =0

[
H+Hy,=H® 1)+ (1 ® Hp)

~First law of
thermodynamics
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Modeling the photoisomer in the resource theory

» Hilbert space: 7,

T fz =
» Hamiltonian: Hmol = [ d(p Helec(qﬁ) X |§0><§0 | = 1elec X ﬁ
0
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Modeling photoisomerization’s steps with thermal operations

Initial molecule-and-laser state: e #ec/Z . @ | = 0) (@ = 0| ® Praser > (photoexcitation)
Petec ® | = 0){(p = 0| — (rotation)

Gelec® |§0=ﬂ><§0:75|




Question




Question

« How large a probability weight can the final state have on the lower level?
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Second law in conventional thermodynamics

» (an a system transition from one state to another spontaneously?

o Compare free energies. —» F=E — TS
» Do they satisfy (the appropriate manifestation of) the second law? —» AF <0

o Setting: equilibrium, large-system limit, implicit averaging
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In thermodynamic resource theory

« Does any free operation map (p, H) to (o, H')?

o Must check a family of inequalities —» “second laws"
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o One subfamily of inequalities governs the state’s energy diagonal.
(p,H) = (6, H)?

lH

a C
5k
ok o

Pd_;

o Another subfamily governs the coherences.

« We wantto bound a diagonal element.
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(p,H) = (0,H)?

KZ
Helec(qp) ® | ¢><(p | + 1elec ® _qo
2m

l

Effective 4-level system:

(2 nuclear states)
X (2 electronic states)
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Applying the second laws of thermodynamics to the photoisomer

Coherence theorem

A density operator can be broken into modes, each defined by a gap.
The modes transform independently under thermal operations.

Marvian and Spekkens, Phys. Rev.A90, 062110 (2014).
Lostaglio et al., Phys. Rev. X 5,021001 (2015).
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Second laws of thermodynamics for the energy diagonal

e Janzing etal., Int. J. Theor. Phys. 39, 12 (2000).
Horodecki and Oppenheim, Nat. Comm. 4, 2059 (2013).

» Mathematical toolkit: d-majorization

How to check whether (p, H) = (o, H) for free

« Rescale each probability with an inverse Boltzmann factor.

r = 7 ePEu

Srgl R

Informational resource  Energetic resource

o Order the rescaled probabilities from greatest to least.

I elEr > 2 o = v, ePtd

o Plot partial sums.
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Second laws of thermodynamics

How to check whether (p, H) = (o, H) for free

r1+ro+ry3=1-

e Gibbs-rescaled
Lorenz curve

o Geometric representation of

the system's
thermodynamic value =00
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2?21 B




Second laws of thermodynamics

How to check whether (p, H) = (o, H) for free

o Plotthe (p,H) and (o, H) curves on the same plot.




Second laws of thermodynamics

How to check whether (p, H) = (o, H) for free

o Plotthe (p,H) and (o, H) curves on the same plot.

o Theorem: (p, H) — (o, H) itand only if the (p, H) curve lies, everywhere,
above or on the (o, H) curve.




Second laws of thermodynamics

How to check whether (p, H) = (o, H) for free

o Plotthe (p,H) and (o, H) curves on the same plot.

o Theorem: (p, H) — (o, H) itand only if the (p, H) curve lies, everywhere,
above or on the (o, H) curve.




Second laws of thermodynamics

How to check whether (p, H) = (o, H) for free

o Plotthe (p,H) and (o, H) curves on the same plot.

o Theorem: (p, H) — (o, H) itand only if the (p, H) curve lies, everywhere,
above or on the (o, H) curve.

e (p, H) has more thermodynamic value,
can transform into (o, H) "spontaneously”




Second laws of thermodynamics

How to check whether (p, H) = (o, H) for free

o Plotthe (p,H) and (o, H) curves on the same plot.

o Theorem: (p, H) — (o, H) itand only if the (p, H) curve lies, everywhere,
above or on the (o, H) curve.

Encodes a bunch of inequalities

e (p, H) has more thermodynamic value,
can transform into (o, H) "spontaneously”




Apply the second laws of thermodynamics
to the photoisomer.

NYH and Limmer, arXiv:1811.06551 (2018).
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Applying the second laws to the photoisomer

Strateqgy

Construct a post-laser state 2 of the molecule.

M

Plug into the second laws.— 1 free parameter:

Solve for the greatest s_ for which the p curve lies above/on the o curve.
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o We've derived fundamental thermodynamic limitations
on the molecule's switching probability

« When the laseris poor (as in some realistic settings),
the resource-theory bound constrains the yield tightly.

o We can understand the bound through energetic and informational resources.

o Using a Lindblad model, we can find a parameter regime
in which the resource-theory bound is saturated.

— NYH and Limmer, arXiv:1811.06551 (2018).

« Coherences can't help, in the absence of external resources.
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More applications of resource-theory results to the photoisomer

 Minimal work required to photoexcite the molecule in a single shot

| &€,)
N A « Notsimply &, — &_

o Quantified with a "one-shot entropy”

« Extraction of work from coherences
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Recap

NYH and Limmer, arXiv:1811.06551 (2018).

The photoisomer O\%/O == O\/\O
®

« Thermodynamic resource theories
e How to model your favorite system
 "Second laws" of thermodynamics

* Results
* Modeled the photoisomer in a resource theory
 Bounded the photoisomerization probability, using second laws
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theories

« What other experimental systems could a resource-theory analysis benefit?

» Exciton transport in quantum-dot films
* Photovoltaics

* Where do you need fundamental limitations on energy and information processing?

Especially for... ¢ small systems
* coherent states
e single-shot trials
o finite-size baths

NYH and Limmer, arXiv:1811.06551 (2018).




