Multi-species exclusion process and Macdonald polynomials

Jan de Gier

18 February 2016, KITP Santa Barbara

Collaborators: Luigi Cantini Michael Wheeler

Motivation

 Obtain explicit expressions for the stationary state of the multi-species asymmetric simple exclusion process using represention theory and theory of symmetric polynomials.

18 February 2016

Motivation

 Obtain explicit expressions for the stationary state of the multi-species asymmetric simple exclusion process using represention theory and theory of symmetric polynomials.

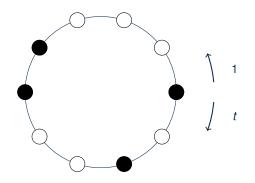
 Obtain new explicit expressions for Macdonald polynomials using stochastic processes.

Asymmetric simple exclusion process (ASEP)

ASEP

Asymmetric simple exclusion process (ASEP)

Continuous time Markov chain of hopping particles:



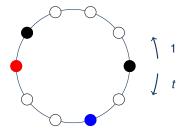
Configurations
$$\mu = (\mu_1, \dots, \mu_n)$$

 $\mu_i \in \{0, 1\}$

Markov chain: $01 \mapsto 10$ with rate 1 $10 \mapsto 01$ with rate t

Generalise to multi-species process

multi-species ASEP



Configurations
$$\mu = (\mu_1, \dots, \mu_n), \quad \mu_i \in \{0, \dots, r\}$$

$$\dots \mu_i, \mu_{i+1} \dots \mapsto \dots \mu_{i+1}, \mu_i \dots \begin{cases} \text{rate 1} & \text{if } \mu_i < \mu_{i+1} \\ \text{rate } t & \text{if } \mu_i > \mu_{i+1} \end{cases}$$

We will be interested in the stationary state

Transition matrix

Let $|\mu\rangle \in \mathbb{C}^{r+1}$ be the standard basis.

The local transition matrix between $|\ldots \mu_i, \mu_{i+1} \ldots\rangle$ and $|\ldots \mu_{i+1}, \mu_i \ldots\rangle$ is given by

$$L_i = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & t & 0 \\ 0 & 1 & -t & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The stationary state $|\infty\rangle$ is defined by

$$\sum_{i=1}^n L_i \mid \infty \rangle = 0, \qquad \mid \infty \rangle = \sum_{\mu} f_{\mu_1, \dots, \mu_n} \mid \mu \rangle.$$

and we would like to know f_{μ} .

In the case of r=1:

Theorem (Derrida, Evans, Hakim, Pasquier,)

There exist matrices A₀ and A₁ such that

$$f_{\mu_1,\ldots,\mu_n}=\operatorname{Tr}\left(A_{\mu_1}\cdots A_{\mu_n}\right)$$

and

$$A_0A_1 - tA_1A_0 = (1-t)(A_0 + A_1).$$

Trivial representation ($A_0 = A_1 = 2$) suffices for r = 1 periodic boundary conditions.

For general *r* (Prolhac et al) or open boundaries we need "*t*-bosons":

$$A_0 = \phi + 1, \qquad A_1 = \phi^{\dagger} + 1,$$

$$\phi \phi^{\dagger} - t \phi^{\dagger} \phi = 1 - t.$$

with infinite "Fock representation"

$$\phi^{\dagger}|m\rangle = |m+1\rangle, \qquad \phi|m\rangle = (1-t^m)|m-1\rangle.$$

Inhomogeneous generalisation

- The (multi-species) ASEP is a quantum integrable system (Yang-Baxter)
- There exist an integrable discrete time generalisation with spatial inhomogeneities:

Let

$$b^{+} = \frac{t(x - y)}{tx - y},$$
 $b^{-} = t^{-1}b^{+},$ $c^{+} = 1 - b^{+},$ $c^{-} = 1 - b^{-}.$ (1)

Then for r=1, define a generalised local transition matrix between $|\dots \mu_i, \mu_{i+1} \dots\rangle$ and $|\dots \mu_{i+1}, \mu_i \dots\rangle$ by

$$\check{R}_i(x,y) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & c^- & b^+ & 0 \\ 0 & b^- & c^+ & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad L_i = \check{R}_i(1,1)^{-1}\check{R}_i'(1,1).$$

Generalised stationary state

The generalised inhomogeneous stationary state $|\infty\rangle$ is now defined by

$$\check{R}_i(x_i,x_{i+1})\mid \infty \rangle = s_i \mid \infty \rangle, \qquad \mid \infty \rangle = \sum_{\mu} f_{\mu_1,\dots,\mu_n}(x_1,\dots,x_n) \mid \mu \rangle.$$

with quasi-periodic boundary condition

$$f_{\mu_n,\mu_1,\ldots,\mu_{n-1}}(qx_n,x_1,\ldots,x_{n-1};q,t)=q^{\mu_n}f_{\mu_1,\ldots,\mu_n}(x_1,\ldots,x_n;q,t).$$

Generalised stationary state

The generalised inhomogeneous stationary state $|\infty\rangle$ is now defined by

$$\check{R}_i(x_i,x_{i+1}) \mid \infty \rangle = s_i \mid \infty \rangle, \qquad \mid \infty \rangle = \sum_{\mu} f_{\mu_1,\dots,\mu_n}(x_1,\dots,x_n) \mid \mu \rangle.$$

with quasi-periodic boundary condition

$$f_{\mu_n,\mu_1,...,\mu_{n-1}}(qx_n,x_1,...,x_{n-1};q,t)=q^{\mu_n}f_{\mu_1,...,\mu_n}(x_1,...,x_n;q,t).$$

To solve for f_{μ} we assume that

$$f_{\mu_1,\ldots,\mu_n}(x_1,\ldots,x_n)=\operatorname{Tr}\left(A_{\mu_1}(x_1)\cdots A_{\mu_n}(x_n)S\right)$$

Macdonald polynomials

Macdonald polynomials

Symmetric group

Let s_i (i = 1, ..., n - 1) be generators of the symmetric group S_n :

$$s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$$

 $s_i^2 = 1;$

There exist a natural *t*-deformation of S_n :

$$(T_i - t)(T_i + 1) = 0,$$
 $(i = 1, ..., n - 1),$
 $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}.$

This is the Hecke algebra (of type A_{n-1}) and S_n is recovered when $t \to 1$.

Polynomial action

The generators s_i act naturally on polynomials:

$$s_i f(..., x_i, x_{i+1}, ...) = f(..., x_{i+1}, x_i, ...)$$
 $i = 1, ..., n-1$

and the *t*-deformation also has an action:

$$T_i = t - \frac{tx_i - x_{i+1}}{x_i - x_{i+1}} (1 - s_i).$$

Define the (non-symmetric) polynomials $f_{\mu}(x_1, \dots, x_n)$ by these relations:

$$\begin{split} & T_i f_{...,\mu_i,\mu_{i+1},...} = t \ f_{...,\mu_i,\mu_{i+1},...} \qquad \mu_i = \mu_{i+1}, \\ & T_i f_{...,\mu_i,\mu_{i+1},...} = f_{...,\mu_{i+1},\mu_i,...} \qquad \mu_i > \mu_{i+1}, \\ & \omega f_{\mu_n,\mu_1,...,\mu_{n-1}} = q^{\mu n} f_{\mu_1,...,\mu_n}. \end{split}$$

- Dynamics of the multi-species inhomogeneous ASEP
- t-deformed Knizhnik-Zamolodchikov equations

Macdonald polynomial

Proposition

Let $\lambda = (\lambda_1, \dots, \lambda_n)$ with $\lambda_1 \ge \dots \ge \lambda_n$. The polynomial P_{λ} defined by

$$P_{\lambda}(x_1,\ldots,x_n;q,t) = \sum_{\sigma \in S_n} f_{\sigma \circ \lambda}(x_1,\ldots,x_n;q,t)$$

is symmetric and equal to a Macdonald polynomial.

Macdonald polynomials are (q, t) generalisations of Schur polynomials (characters of the symmetric group).

The form

$$f_{\lambda}(x_1,\ldots,x_n)=\operatorname{Tr}\Big(A_{\lambda_1}(x_1)\cdots A_{\lambda_n}(x_n)S\Big),$$

implies a matrix product for Macdonald polynomials which is a completely new way of writing these polynomials

Theorem (Cantini, dG, Wheeler)

$$P_{\lambda}(x_1,\ldots,x_n;q,t) = \sum_{\mu\mid\mu^+=\lambda} \operatorname{Tr}\left[S\prod_{i=1}^n A_{\mu_i}(x_i)\right],$$

where the sum is over all permutations μ of λ .

Corollary

The normalised stationary state of the multi-species ASEP is given by

$$f_{\mu_1,\ldots,\mu_n}=rac{1}{P_{\mu^+}}\operatorname{Tr}\left[S\prod_{i=1}^nA_{\mu_i}(x_i)
ight],$$

specialised to $q = x_1 = \ldots = x_n = 1$.

Explicit construction

For $r = \lambda_1$ write

$$\mathbb{A}(x) = (A_0(x), \ldots, A_r(x))^T,$$

as an (r + 1)-dimensional operator valued column vector.

Lemma

The exchange relations are equivalent to

$$\check{R}(x,y) \cdot [A(x) \otimes A(y)] = [A(y) \otimes A(x)]$$

 $\check{R}(x, y)$ is the $U_t(sl_{r+1})$ R-matrix of dimension $(r+1)^2$ (r=1) is the 6-vertex model).

Yang-Baxter algebra and Nested Matrix Product Form

More familiar is rank *r* Yang-Baxter algebra:

$$\check{R}(x,y)\cdot [L(x)\otimes L(y)]=[L(y)\otimes L(x)]\cdot \check{R}(x,y)$$

18 February 2016

Yang-Baxter algebra and Nested Matrix Product Form

More familiar is rank *r* Yang-Baxter algebra:

$$\check{R}(x,y)\cdot [L(x)\otimes L(y)]=[L(y)\otimes L(x)]\cdot \check{R}(x,y)$$

Assume a solution of the following modified RLL relation

$$\check{R}^{(r)}(x,y)\cdot \left[\tilde{L}(x)\otimes \tilde{L}(y) \right] = \left[\tilde{L}(y)\otimes \tilde{L}(x) \right]\cdot \check{R}^{(r-1)}(x,y)$$

in terms of an $(r + 1) \times r$ operator-valued matrix $\tilde{L}(x) = \tilde{L}^{(r)}(x)$.

Yang-Baxter algebra and Nested Matrix Product Form

More familiar is rank *r* Yang-Baxter algebra:

$$\check{R}(x,y)\cdot [L(x)\otimes L(y)]=[L(y)\otimes L(x)]\cdot \check{R}(x,y)$$

Assume a solution of the following modified RLL relation

$$\check{R}^{(r)}(x,y)\cdot\left[\tilde{L}(x)\otimes\tilde{L}(y)\right]=\left[\tilde{L}(y)\otimes\tilde{L}(x)\right]\cdot\check{R}^{(r-1)}(x,y)$$

in terms of an $(r+1) \times r$ operator-valued matrix $\tilde{L}(x) = \tilde{L}^{(r)}(x)$.

Then

$$\mathbb{A}^{(r)}(x) = \tilde{L}^{(r)}(x) \cdot \tilde{L}^{(r-1)}(x) \cdots \tilde{L}^{(1)}(x)$$

Solves the algebra

$$\check{R}(x,y)\cdot [\mathbb{A}(x)\otimes \mathbb{A}(y)]=[\mathbb{A}(y)\otimes \mathbb{A}(x)]$$

Zipper proof

$$\begin{split} &\check{R}^{(r)}(x,y) \cdot \left[\check{L}^{(r)}(x) \otimes \check{L}^{(r)}(y) \right] \cdot \left[\check{L}^{(r-1)}(x) \otimes \check{L}^{(r-1)}(y) \right] \\ &= \left[\check{L}^{(r)}(y) \otimes \check{L}^{(r)}(x) \right] \cdot \check{R}^{(r-1)}(x,y) \cdot \left[\check{L}^{(r-1)}(x) \otimes \check{L}^{(r-1)}(y) \right] \\ &= \left[\check{L}^{(r)}(y) \otimes \check{L}^{(r)}(x) \right] \cdot \left[\check{L}^{(r-1)}(y) \otimes \check{L}^{(r-1)}(x) \right] \cdot \check{R}^{(r-2)}(x,y) \end{split}$$

Rank 1 solution

Explicitly

$$\check{R}^{(r)}(x,y)\cdot\left[\tilde{L}(x)\otimes\tilde{L}(y)\right]=\left[\tilde{L}(y)\otimes\tilde{L}(x)\right]\cdot\check{R}^{(r-1)}(x,y)$$

for r = 1 is given by

$$\left(\begin{array}{cc|c}
1 & 0 & 0 & 0 \\
0 & c^{-} & b^{+} & 0 \\
\hline
0 & b^{-} & c^{+} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \cdot \left[\left(\begin{array}{c} 1 \\ x \end{array}\right) \otimes \left(\begin{array}{c} 1 \\ y \end{array}\right)\right] = \left[\left(\begin{array}{c} 1 \\ y \end{array}\right) \otimes \left(\begin{array}{c} 1 \\ x \end{array}\right)\right].$$

Rank 2 solution

$$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ b^{+} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & b^{+} & 0 \\ \hline c^{+} & 0 & 0 & 0 \\ 0 & c^{+} & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \begin{pmatrix} 1 & \phi^{\dagger} \\ xk & 0 \\ x\phi & x \end{pmatrix} \otimes \begin{pmatrix} 1 & \phi^{\dagger} \\ yk & 0 \\ y\phi & y \end{pmatrix} \end{bmatrix} = \begin{bmatrix} 1 & \phi^{\dagger} \\ 0 & 0 & 0 \end{bmatrix}$$

$$\left[\left(\begin{array}{ccc} 1 & \phi^\dagger \\ yk & 0 \\ y\phi & y \end{array} \right) \otimes \left(\begin{array}{ccc} 1 & \phi^\dagger \\ xk & 0 \\ x\phi & x \end{array} \right) \right] \cdot \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & c^- & b^+ & 0 \\ \hline 0 & b^- & c^+ & 0 \\ 0 & 0 & 0 & 1 \end{array} \right),$$

We construct a solution for A in the following way:

$$\mathbb{A}(x) = \tilde{L}^{(2)}(x) \cdot \tilde{L}^{(1)}(x) = \begin{pmatrix} 1 & \phi^{\dagger} \\ xk & 0 \\ x\phi & x \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix} = \begin{pmatrix} 1 + x\phi^{\dagger} \\ kx \\ x\phi + x^2 \end{pmatrix}.$$

Example:

$$f_{001122}(x_1,\ldots,x_6;q=t^u,t)=\text{Tr}\left[A_0(x_1)A_0(x_2)A_1(x_3)A_1(x_4)A_2(x_5)A_2(x_6)S\right],$$

$$A_0(x) = 1 + x\phi^{\dagger},$$

$$A_1(x) = xk,$$

$$A_2(x) = x\phi + x^2,$$

S has the form

$$S = k^{u} = \text{diag}\{1, t^{-u}, t^{-2u}, \ldots\} = \text{diag}\{1, q^{-1}, q^{-2}, \ldots\}.$$

Example

$$\begin{split} f_{001122}(x_1,\ldots,x_6;q&=t^u,t) = \\ &\text{Tr}\left[\left(1+x_1\phi^{\dagger}\right)\left(1+x_2\phi^{\dagger}\right)x_3kx_4kx_5\left(\phi+x_5\right)x_6\left(\phi+x_6\right)S\right] \\ &= x_3x_4x_5x_6\,\text{Tr}\left[\left(x_5x_6k^2+(x_1+x_2)(x_5+x_6)\phi^{\dagger}k^2\phi+x_1x_2(\phi^{\dagger})^2k^2\phi^2\right)S\right], \end{split}$$

where other terms involving unequal powers of ϕ^{\dagger} and a have zero trace.

Normalising with $Tr(k^2S)$ we finally get

$$\begin{split} f_{001122}(x_1,\ldots,x_6;q&=t^u,t)=x_3x_4x_5^2x_6^2\\ &+x_3x_4x_5x_6(x_1+x_2)(x_5+x_6)t^2\frac{\text{Tr }\phi^\dagger\phi K^2S}{\text{Tr }k^2S}+x_1x_2x_3x_4x_5x_6t^4\frac{\text{Tr}(\phi^\dagger)^2\phi^2k^2S}{\text{Tr }k^2S} \end{split}$$

General construction and sum rules

General construction

Starting from RLL=LLR

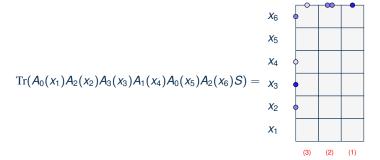
corresponds with $L_{1.0}^{(3)} = k_3 k_2 \phi_1$,

Trivialising ϕ_1

$$\phi_1 = \phi_1^{\dagger} = 1, \qquad k_1 = 0.$$

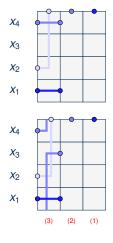
Combinatorial rule

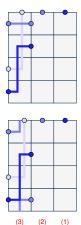
For r=3 and $\lambda=(0,2,3,1,0,2)$, the matrix product can be represented in the following way:



Column by column transition

With $\lambda = (3, 1, 0, 2)$. We obtain the following four terms:





Solution for rank 3

$$\mathbb{A}^{(3)}(x) = \begin{pmatrix} 1 & \phi_2^\dagger & \phi_3^\dagger \\ xk_3k_2 & 0 & 0 \\ xk_3\phi_2 & xk_3 & 0 \\ x\phi_3 & x\phi_3\phi_2^\dagger & x \end{pmatrix}^{(3)} \cdot \begin{pmatrix} 1 & \phi_2^\dagger \\ xk_2 & 0 \\ x\phi_2 & x \end{pmatrix}^{(2)} \cdot \begin{pmatrix} 1 \\ x \end{pmatrix}^{(1)} = \begin{pmatrix} A_0(x) \\ A_1(x) \\ A_2(x) \\ A_3(x) \end{pmatrix}.$$

Summation formula

A corollary is the following new summation formula.

Theorem

Let $\lambda[k]$ be a partition obtained from λ by replacing all parts of size $\leq k$ with 0.

$$P_{\lambda}(x_{1},\ldots,x_{n};q,t)=\sum_{\sigma\in\mathcal{S}_{\lambda}}T_{\sigma}\circ x_{\lambda}\circ\prod_{i=1}^{r-1}\left(\sum_{\sigma\in\mathcal{S}_{\lambda[i]}}C_{i}\begin{pmatrix}\lambda[i-1]\\\sigma\circ\lambda[i]\end{pmatrix}T_{\sigma}\circ x_{\lambda[i]}\circ\right)1$$

with coefficients that satisfy $C_i(\lambda, \mu) = 0$ if any $0 < \lambda_k < \mu_k$, and

$$C_i(\lambda,\mu) \equiv C_i \begin{pmatrix} \lambda_1 \cdots \lambda_n \\ \mu_1 \cdots \mu_n \end{pmatrix} = \prod_{j=i+1}^r \left(q^{(j-i)a_j(\lambda,\mu)} \prod_{k=1}^{b_j(\lambda,\mu)} \frac{1-t^k}{1-q^{j-i}t^{\lambda_i'-\lambda_j'+k}} \right),$$

otherwise.

Specialisations

Monomial symmetric polynomials (t = 1)

$$P_{\lambda}(x_1,\ldots,x_n;q,1)=\sum_{\sigma\in\mathcal{S}_{\lambda}}s_{\sigma}\circ x_{\lambda}\circ\prod_{i=1}^{r-1}x_{\lambda[i]}=\sum_{\sigma\in\mathcal{S}_{\lambda}}\sigma\circ\left(\prod_{i=1}^{n}x_{i}^{\lambda_{i}}\right)=m_{\lambda}(x_1,\ldots,x_n),$$

• Hall–Littlewood polynomials (q = 0)

$$P_{\lambda}(x_1,\ldots,x_n;t)=\sum_{\sigma\in\mathcal{S}_{\lambda}}T_{\sigma}\circ x_{\lambda}\circ\prod_{i=1}^{r-1}x_{\lambda[i]}=\sum_{\sigma\in\mathcal{S}_{\lambda}}T_{\sigma}\circ\left(\prod_{i=1}^{n}x_{i}^{\lambda_{i}}\right).$$

Specialisations

q-Whittaker polynomials (t = 0)

$$P_{\lambda}(x_{1},\ldots,x_{n};q,0) = \sum_{\sigma \in \mathcal{S}_{\lambda}} D_{\sigma} \circ x_{\lambda} \circ \prod_{i=1}^{r-1} \left(\sum_{\sigma \in \mathcal{S}_{\lambda[i]}} C_{i} \begin{pmatrix} \lambda[i-1] \\ \sigma \circ \lambda[i] \end{pmatrix} D_{\sigma} \circ x_{\lambda[i]} \circ \right) 1$$

with coefficients that satisfy $C_i(\lambda,\mu)=0$ if any $0<\lambda_k<\mu_k$, and $C_i(\lambda,\mu)=\prod_{j=i+1}^r q^{(j-i)a_j(\lambda,\mu)}$ otherwise, and where each D_σ is now composed of the divided-difference operators

$$D_i = (x_i/x_{i+1}-1)^{-1}(1-s_i), \qquad 1 \le i \le n-1.$$

Conclusion

- Explicit construction of (matrix product) stationary state of a multi-species inhomgeneous exclusion process
- Use Yang-Baxter integrability, representation theory, theory of multi-variable polynomials
- New explicit formulas for Macdonald polynomials using ideas from stochastic processes