IMPLICATIONS OF RECENT DATA FOR THEORIES OF DARK MATTER

Jonathan Feng, UC Irvine

Strings at the LHC and in the Early Universe KITP Santa Barbara7 May 2010

TOPICS

- PAMELA, FERMI, \ldots \leftrightarrow BOOSTED WIMPS
- CDMS, XENON, \dots \leftrightarrow WIMPS
- DAMA, $\mathsf{COGENT},\ \ldots\quad\leftrightarrow\quad\quad\mathsf{LIGHT~WIMPS}$
- $\mathsf{TEVATRON},\mathsf{LHC}$ $\qquad \leftrightarrow \qquad \mathsf{SUPERWIMPS}$ LIGHT GRAVITINOS

For more, see "Dark Matter Candidates from Particle Physics and Methods of Detection," 1003.0904, Annual Reviews of Astronomy and Astrophysics

THE WIMP MIRACLE

- Assume a new (heavy) particle *X* is initially in thermal equilibrium
- Its relic density is

 \boldsymbol{m}_{χ} \sim 100 GeV, \boldsymbol{g}_{χ} \sim 0.6 \rightarrow Ω_{χ} \sim 0.1

 \bullet Remarkable coincidence: particle physics independently predicts particles with the right density to be dark matter

WIMP STABILITY

- •The WIMP miracle assumes a stable new particle. Why should this be?
- • LEP and SLC confirmed the standard model, stringently constrained effects of new particles
- \bullet • Problem: Gauge hierarchy \rightarrow new particles ~100 GeV LEP/SLC \rightarrow 4-fermi $\,$ interaction mass scale > 3 TeV $\,$ (even considering only flavor-, CP-, B-, and L-conserving effects)

LEP'S COSMOLOGICAL LEGACY

 \bullet Simple solution: impose a discrete parity, so all interactions require pairs of new particles. This also makes the lightest new particle stable.

Cheng, Low (2003); Wudka (2003)

- •This is a general argument for a stable weak-scale particle
- \bullet In specific contexts, this may be augmented by additional arguments. E.g., in SUSY, proton decay \Rightarrow R-parity \Rightarrow stable LSP.

EXAMPLES

Supersymmetry

- R-parity
- –Neutralino DM

Fayet, Farrar (1974)

Goldberg (1983) Ellis et al. (1984)

Universal Extra Dimensions

– KK-parity

Appelquist, Cheng, Dobrescu (2000)

Kaluza-Klein DM

Servant, Tait (2002)

Cheng, Feng, Matchev (2002)

Branes

…

- Brane-parity
- Branons DM

Cembranos, Dobado, Maroto (2003)

New Particle States

WIMP DETECTION

Correct relic density \rightarrow *Lower* bound on DM-SM interaction

Efficient scattering now (Direct detection)

INDIRECT DETECTION

Solid lines are the predicted spectra from GALPROP (Moskalenko, Strong)

ARE THESE DARK MATTER?

• Astrophysics can explain PAMELA

Zhang, Cheng (2001); Hooper, Blasi, Serpico (2008) Yuksel, Kistler, Stanev (2008) Profumo (2008) ; Fermi (2009) •

- • For dark matter, there is both good and bad news
	- Good: the WIMP miracle motivates excesses at ~100 GeV – TeV
	- Bad: the WIMP miracle also tells us that the annihilation cross section should be a factor of 100-1000 too small to explain these excesses. Need enhancement from
		- astrophysics (very unlikely)
		- particle physics
			- **Winos**
			- Resonances
			- DM from Decays
			- Sommerfeld enhancements

SOMMERFELD ENHANCEMENT

•• If dark matter X is coupled to a hidden force carrier ϕ , it can then annihilate through XX $\rightarrow \scriptstyle\phi\ \scriptstyle\phi$

•• At freezeout: v ~ 0.3, only 1st diagram is significant, σ = σ^th Now: v ~ 10⁻³, all diagrams significant, σ = S σ^{th} , S ~ $\pi\alpha_{\textsf{\textbf{x}}}/$ v, boosted at low velocitiesSommerfeld (1931)

Hisano, Matsumoto, Nojiri (2002)

•If S \sim 1000 [m_x / 2 TeV], seemingly can explain excesses, get around WIMP miracle predictions
Cirelli, Kadastik, Raidal, Strumia (2008)

Arkani-Hamed, Finkbeiner, Slatyer, Weiner (2008)

CONSTRAINTS ON SOMMERFELD ENHANCEMENTS

Feng, Kaplinghat, Yu (2009, 2010)

- \bullet • Unfortunately, large S requires large α_X , but strongly-interacting DM does not have the correct relic density
- •• More quantitatively: for m_χ = 2 TeV, $\textsf{S} \thicksim \pi \alpha_\textsf{X} / \textsf{v} \thicksim 1000$, v $\thicksim 10^{\textnormal{-}3} \textcolor{black}{\rightarrow} \ \alpha_\textsf{X} \thicksim 1 \thicksim \Omega_\textsf{X} \thicksim 0.001$
- •• Alternatively, requiring Ω_{X} ~ 0.25, what is the maximal S?
- • Complete treatment requires including
	- Resonant Sommerfeld enhancement
	- Impact of Sommerfeld enhancement on freeze out
	- Maximize S by pushing all parameters in the most optimistic direction

FREEZE OUT AND MELT IN

CONSTRAINTS ON SOMMERFELD ENHANCEMENTS

- • Best fit region [Bergstrom et al. (2009)] excluded by over an order of magnitude 103
- • Astrophysical uncertainties
	- •Local density
	- •Small scale structure
	- \bullet Cosmic ray propagation
- • More complicated models
	- •Smaller boosts required
	- •Tighter bounds

DIRECT DETECTION

- • Direct detection searches for nuclear recoil in underground detectors
- • Spin-independent scattering is typically the most promising
- • Theory and experiment compared in the (m_X, σ_p)
plane
	- $\mathcal{L}_{\mathcal{A}}$, where $\mathcal{L}_{\mathcal{A}}$ is the set of the Expts: CDMS, XENON, …
	- – $-$ Theory: Shaded region is the predictions for SUSY neutralino DM – what does this mean?

NEW PHYSICS FLAVOR PROBLEM

- \bullet New weak scale particles generically create many problems
- •• One of *many* possible examples: K-K mixing

- Three possible solutions
	- $\mathcal{L}_{\mathcal{A}}$ Alignment: θ small
	- $\mathcal{L}_{\mathcal{A}}$ $-$ Degeneracy: squark $\Delta {\sf m} << {\sf m}$: typically not compatible with DM, because the gravitino mass is $\sim \Delta m$, so this would imply that neutralinos decay to gravitinos
	- Decoupling: m > few TeV

THE SIGNIFICANCE OF 10-44 CM²

DIRECT DETECTION: DAMA

 \bullet Annual modulation expected

Drukier, Freese, Spergel (1986)

 \bullet • DAMA: 8.9σ signal with $-$ T ~ 1 year, max ~ June 2 $\,$

CHANNELING

- • DAMA's results have been puzzling, in part because the allowed region is excluded by other experiments
- • This may be ameliorated by astrophysics and channeling: in crystalline detectors, efficiency for nuclei recoil energy \rightarrow electron energy depends on direction
- • Channeling reduces threshold, shifts allowed region to lower masses. Consistency restored?

Gondolo, Gelmini (2005) Drobyshevski (2007), DAMA (2007)

LIGHT WIMPS

- • Channeling may open up a new ~10 GeV region that is marginally acceptable
- • This region is now tentatively supported by CoGeNT, disfavored by XENON100
- • Low masses and high cross sections are hard to obtain with conventional WIMPs: for example, for neutralinos, chirality flip implies large suppression

HIDDEN SECTORS

- Can we obtain something like the WIMP miracle, but with hidden DM? Need some structure.
- \bullet Consider standard GMSB with one or more hidden sectors
- •Each hidden sector has its own gauge groups and couplings

THE WIMPLESS MIRACLE

Feng, Kumar (2008)

•Particle Physics

Superpartner masses, interaction strengths depend on gauge couplings

•**Cosmology**

$$
\frac{m_X}{g_X^2} \sim \frac{m}{g^2} \sim \frac{F}{16\pi^2 M}
$$

Ω depends only on the SUSY Breaking sector: $\Omega_{\mathsf{X}}\thicksim\Omega_{\mathsf{WIMP}}\thicksim\Omega_{\mathsf{DM}}$

Any hidden particle with mass $\thicksim m_\chi$ will have the right thermal relic density (for any m_x)

THE WIMPLESS MIRACLE

$$
\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}
$$

• The thermal relic density constrains only one combination of g_χ and $m_{\chi{\cdot}}$ These models map out the remaining degree of freedom; candidates have a range of masses and couplings, but always the right relic density.

• This decouples the WIMP miracle from WIMPs (is this what the flavor problem is really trying to tell us?)

WIMPLESS SIGNALS

 \bullet Hidden DM may interact with normal matter through non-gauge interactions

Y

X

X

WIMPLESS DIRECT DETECTION

- • The DAMA/CoGeNT region is easy to reach with WIMPless DM
- • E.g., assume WIMPless DM X is a scalar, Y is a fermion, interact with **b** quarks through λ_b ($\mathsf{XY}_\mathsf{L}\mathsf{b}_\mathsf{L}$ + $\mathsf{XY}_\mathsf{R}\mathsf{b}_\mathsf{R}$) + $\mathsf{m}_\mathsf{Y}\mathsf{Y}_\mathsf{L}\mathsf{Y}_\mathsf{R}$
- • Naturally correct mass, cross section
	- $-$ m $_{\mathrm{\mathsf{x}}}$ ~ 5-10 GeV (WIMPless miracle)
	- **Lating Contracts** – large $\sigma_{\scriptstyle \text{SI}}$ for $\lambda_{\scriptstyle \text{b}}$ ~ 0.3 – 1 (flip chirality $\;$ on heavy Y propagator)

FUTURE PROSPECTS

•SuperK can probe this region

> Hooper, Petriello, Zurek, Kamionkowski (2009) Feng, Kumar, Strigari, Learned (2009) Kumar, Learned, Smith (2009)

- • Tevatron and LHC can find connector particles: colored, similar to $4th$ generation quarks
- • EW precision studies, direct searches, perturbativity $\bm{\rightarrow}$ 300 GeV < m $_{\rm Y}$ < 600 GeV

EXOTIC 4TH QUARKS AT LHC

•• Entire m $_{\mathrm{X}}$ ~ 10 GeV region can be excluded by 10 TeV LHC with 300 pb^{-1} (~7 TeV LHC with 1 fb-1)

• Significant discovery prospects with early LHC data

80

60

40

20

5 fbi

380

400 420 440

460 480

 m_T (GeV)

340 360

320

7 May 10 **Alwall, Feng, Kumar, Su (2010)** 26

SUPERWIMP DM

Feng, Rajaraman, Takayama (2003)

Consider supersymmetry (similar story in UED). There is a gravitino, mass~100 GeV, couplings~ M_{W} / M_{Pl} ~10⁻¹⁶

•*G*̃ LSP

•*G*̃ not LSP

• Assumption of most of **literature**

 \bullet Completely different cosmology and particle physics

SUPERWIMP RELICS

• Consider *G* **∼** LSPs:WIMPs freeze out as usual, but then decay to *G ̃*i after $M_{\rm Pl}^{-2}/M_{\rm W}^{-3}$ ~ seconds to months

COSMOLOGY OF LATE DECAYS

Late decays impact light element abundances

- •Lots of complicated nucleoparticlecosmochemistry
- •BBN typically excludes very large lifetimes
- •• BBN excludes $\chi \to Z$ \tilde{G} , but Ĩ → I \tilde{G} ok

7 May 10

LATE DECAYS AND 7Li/ 6Li

- •⁷Li does not agree with standard BBN prediction
	- • Too low by factor of 3, ~5 σ at face value
	- • May be solved by convection in stars, but then why so uniform?
- •6Li may also not agree

•Too high

- •Late decays can fix both
- • For mSUGRA, fixing both, and requiring Ω_໕ = 0.1 →
heavy sleptons > TeV

MODEL FRAMEWORKS

- •mSUGRA's famous 4+1 parameters: $|m_0^2, M_{1/2}, A_0, \tan \beta, \text{ sign}(\mu)|$
- •Excluded regions: LEP limits, Stau LSP
- •• But this is incomplete: Missing m_{$\tilde{\mathsf{c}}$, assumes m $_0$} $2 > 0$

THE COMPLETE MSUGRA

•Extend the mSUGRA parameters to

 $m_0^2, M_{1/2}, A_0, \tan \beta$, sign(μ), and $m_{3/2}$

- \bullet If LSP = gravitino, then no reason to exclude stau (N)LSP region
- •Also include small or negative

 $m_0 \equiv \text{sign}(m_0^2)\sqrt{|m_0^2|}$

- • This includes no-scale/gauginomediated models with m $_{\rm 0}$ = 0 $\,$
- • Much of the new parameter space is viable with a slepton NLSP and a gravitino LSP

CURRENT BOUNDS

• Current Bounds

- LEP: slepton mass > 97.5 GeV, chargino > 102.5 GeV
- CDF Run I: slepton cross section < 1 pb
- CDF Run II: top squark mass > 249 GeV

- $\mathcal{L}_{\mathcal{A}}$ D0 Run II: chargino mass > 200 GeV
- – D0 Run II: slepton cross section < 0.1 pb
	- assumes only Drell-Yan pair production (no cascades)
	- require 2 slow, isolated "muons"
	- about a factor of 5 from unexplored mass territory

LHC DISCOVERY POTENTIAL

Rajaraman, Smith (2006)

- \bullet Look for Drell-Yan slepton pair production
- • Require events with 2 central, isolated "muons" with
	- •p > 100 GeV
	- $p_T > 20$ GeV

 \bullet Finally assume TOF detector resolution of 1 ns, require both muons to have TOF delays > 3 ns

•Require 5σ signal with S > 10 events for discovery

- •Model A is "best case scenario"
- •Lesson: *Very* early on, the LHC will probe new territory

CHARGED PARTICLE TRAPPING

- SuperWIMP $DM \rightarrow$ metastable particles, may be charged, far more spectacular than misssing E_T (1st year LHC discovery)
- • Can collect these particles and study their decays
- Several ideas
	- Catch sleptons in a 1m thick water tank (up to 1000/year)

Feng, Smith (2004)

Catch sleptons in LHC detectors

Hamaguchi, Kuno, Nakawa, Nojiri (2004)

Dig sleptons out of detector hall walls

De Roeck et al. (2005)

LIGHT GRAVITINO DM

- The original SUSY DM scenario
	- **Hart Committee** Universe cools from high temperature
	- –– Gravitinos decouple while relativistic, Ω_õ h² ≈ m_Õ / 800 eV
	- **Hart Committee** – Favored mass range: keV gravitinos

Pagels, Primack (1982)

- This minimal scenario is now excluded
	- <u>– London Starten und </u> $\Omega_\mathbb{\tilde{G}}$ h^2 < 0.1 \to m $_\mathbb{\tilde{G}}$ < 80 eV
	- Gravitinos not too hot \Rightarrow m $_{\tilde{\mathrm{G}}}$ > few keV
	- **Hart Committee** $-$ keV gravitinos are now the most disfavored

Viel, Lesgourgues, Haehnelt, Matarrese, Riotto (2005) Seljak, Makarov, McDonald, Trac (2006)

- Two ways out
	- –– ΛWDM: m_Ğ density is diluted by low reheating temperature, late entropy production, …
	- **Lating Contracts** – ΛWCDM: m_õ < 16 eV. Gravitinos are only part of the DM, mixed
warm-cold scenario

CURRENT BOUNDS

LIGHT GRAVITINOS AT THE LHC

Lee, Feng, Kamionkowski (2010)

CONCLUSIONS

- DM searches are progressing rapidly on all fronts
	- Direct detection
	- Indirect detection
	- LHC
- Proliferation of DM candidates, but many are tied to the weak scale
- In the next few years, these DM models will be stringently tested