IMPLICATIONS OF RECENT DATA FOR THEORIES OF DARK MATTER

Jonathan Feng, UC Irvine

Strings at the LHC and in the Early Universe KITP Santa Barbara 7 May 2010

TOPICS

- PAMELA, FERMI, ... \leftrightarrow BOOSTED WIMPS
- CDMS, XENON, ... \leftrightarrow WIMPS
- DAMA, COGENT, ... \leftrightarrow LIGHT WIMPS
- TEVATRON, LHC ↔ SUPERWIMPS LIGHT GRAVITINOS

For more, see "Dark Matter Candidates from Particle Physics and Methods of Detection," 1003.0904, Annual Reviews of Astronomy and Astrophysics

THE WIMP MIRACLE

- Assume a new (heavy) particle X is initially in thermal equilibrium
- Its relic density is

 $m_{\chi} \sim 100 \text{ GeV}, g_{\chi} \sim 0.6 \rightarrow \Omega_{\chi} \sim 0.1$

 Remarkable coincidence: particle physics independently predicts particles with the right density to be dark matter

WIMP STABILITY

- The WIMP miracle assumes a stable new particle. Why should this be?
- LEP and SLC confirmed the standard model, stringently constrained effects of new particles
- Problem: Gauge hierarchy → new particles ~100 GeV LEP/SLC → 4-fermi interaction mass scale > 3 TeV (even considering only flavor-, CP-, B-, and L-conserving effects)

LEP'S COSMOLOGICAL LEGACY

• Simple solution: impose a discrete parity, so all interactions require pairs of new particles. This also makes the lightest new particle stable.

Cheng, Low (2003); Wudka (2003)

- This is a general argument for a stable weak-scale particle
- In specific contexts, this may be augmented by additional arguments.
 E.g., in SUSY, proton decay → R-parity → stable LSP.

EXAMPLES

Supersymmetry

- R-parity
- Neutralino DM

Fayet, Farrar (1974)

Goldberg (1983) Ellis et al. (1984)

Universal Extra Dimensions

– KK-parity

Appelquist, Cheng, Dobrescu (2000)

Kaluza-Klein DM

Servant, Tait (2002)

Cheng, Feng, Matchev (2002)

Branes

. . .

- Brane-parity
- Branons DM

Cembranos, Dobado, Maroto (2003)

New Particle States

WIMP DETECTION

Correct relic density \rightarrow *Lower* bound on DM-SM interaction

Efficient scattering now (Direct detection)

INDIRECT DETECTION

Solid lines are the predicted spectra from GALPROP (Moskalenko, Strong)

ARE THESE DARK MATTER?

 Astrophysics can explain PAMELA

Zhang, Cheng (2001); Hooper, Blasi, Serpico (2008) Yuksel, Kistler, Stanev (2008) Profumo (2008) ; Fermi (2009)

- For dark matter, there is both good and bad news
 - Good: the WIMP miracle motivates excesses at ~100 GeV TeV
 - Bad: the WIMP miracle also tells us that the annihilation cross section should be a factor of 100-1000 too small to explain these excesses. Need enhancement from
 - astrophysics (very unlikely)
 - particle physics
 - Winos
 - Resonances
 - DM from Decays
 - Sommerfeld enhancements

SOMMERFELD ENHANCEMENT

 If dark matter X is coupled to a hidden force carrier φ, it can then annihilate through XX → φ φ

• At freezeout: v ~ 0.3, only 1st diagram is significant, $\sigma = \sigma^{th}$ Now: v ~ 10⁻³, all diagrams significant, $\sigma = S\sigma^{th}$, S ~ $\pi\alpha_X/v$, boosted at low velocities Sommerfeld (1931)

Hisano, Matsumoto, Nojiri (2002)

 If S ~ 1000 [m_X / 2 TeV], seemingly can explain excesses, get around WIMP miracle predictions
 Cirelli, Kadastik, Raidal, Strumia (2008)

Arkani-Hamed, Finkbeiner, Slatyer, Weiner (2008)

CONSTRAINTS ON SOMMERFELD ENHANCEMENTS

Feng, Kaplinghat, Yu (2009, 2010)

- Unfortunately, large S requires large α_X , but strongly-interacting DM does not have the correct relic density
- More quantitatively: for $m_X = 2 \text{ TeV}$, S ~ $\pi \alpha_X/v \sim 1000$, v ~ $10^{-3} \rightarrow \alpha_X \sim 1 \rightarrow \Omega_X \sim 0.001$
- Alternatively, requiring $\Omega_X \sim 0.25$, what is the maximal S?
- Complete treatment requires including
 - Resonant Sommerfeld enhancement
 - Impact of Sommerfeld enhancement on freeze out
 - Maximize S by pushing all parameters in the most optimistic direction

FREEZE OUT AND MELT IN

CONSTRAINTS ON SOMMERFELD ENHANCEMENTS

- **Best fit region** [Bergstrom et al. (2009)] excluded by over an order of magnitude 10³ Astrophysical uncertainties ທ[ື] 10² Local density Small scale structure Cosmic ray propagation ٠ More complicated models 10^{1} 500 Smaller boosts required
 - Tighter bounds

Feng, Kaplinghat, Yu (2010)

DIRECT DETECTION

- Direct detection searches for nuclear recoil in underground detectors
- Spin-independent scattering is typically the most promising
- Theory and experiment compared in the (m_X, σ_p) plane
 - Expts: CDMS, XENON, ...
 - Theory: Shaded region is the predictions for SUSY neutralino DM what does this mean?

NEW PHYSICS FLAVOR PROBLEM

- New weak scale particles generically create many problems
- One of *many* possible examples: K-K mixing

- Three possible solutions
 - Alignment: θ small
 - Degeneracy: squark ∆m << m: typically not compatible with DM, because the gravitino mass is ~ ∆m, so this would imply that neutralinos decay to gravitinos
 - Decoupling: m > few TeV

THE SIGNIFICANCE OF 10⁻⁴⁴ CM²

DIRECT DETECTION: DAMA

Annual modulation expected

Drukier, Freese, Spergel (1986)

DAMA: 8.9σ signal with
 T ~ 1 year, max ~ June 2

2-6 keV

CHANNELING

- DAMA's results have been puzzling, in part because the allowed region is excluded by other experiments
- This may be ameliorated by astrophysics and channeling: in crystalline detectors, efficiency for nuclei recoil energy → electron energy depends on direction
- Channeling reduces threshold, shifts allowed region to lower masses. Consistency restored?

Gondolo, Gelmini (2005) Drobyshevski (2007), DAMA (2007)

LIGHT WIMPS

- Channeling may open up a new ~10 GeV region that is marginally acceptable
- This region is now tentatively supported by CoGeNT, disfavored by XENON100
- Low masses and high cross sections are hard to obtain with conventional WIMPs: for example, for neutralinos, chirality flip implies large suppression

HIDDEN SECTORS

- Can we obtain something like the WIMP miracle, but with hidden DM? Need some structure.
- Consider standard GMSB with one or more hidden sectors
- Each hidden sector has its own gauge groups and couplings

THE WIMPLESS MIRACLE

Feng, Kumar (2008)

Particle Physics

Superpartner masses, interaction strengths depend on gauge couplings Cosmology

$$\frac{m_X}{g_X^2} \sim \frac{m}{g^2} \sim \frac{F}{16\pi^2 M}$$

$$\label{eq:Omega} \begin{split} \Omega \text{ depends only on the} \\ \text{SUSY Breaking sector:} \\ \Omega_{\text{X}} &\sim \Omega_{\text{WIMP}} &\sim \Omega_{\text{DM}} \end{split}$$

Any hidden particle with mass ~ m_X will have the right thermal relic density (for any m_X)

THE WIMPLESS MIRACLE

$$\Omega_X \propto \frac{1}{\langle \sigma v \rangle} \sim \frac{m_X^2}{g_X^4}$$

• The thermal relic density constrains only one combination of g_{χ} and m_{χ} . These models map out the remaining degree of freedom; candidates have a range of masses and couplings, but always the right relic density.

• This decouples the WIMP miracle from WIMPs (is this what the flavor problem is really trying to tell us?)

WIMPLESS SIGNALS

 Hidden DM may interact with normal matter through non-gauge interactions

SUSY

Х

Х

Hidden

Х

•

WIMPLESS DIRECT DETECTION

- The DAMA/CoGeNT region is easy to reach with WIMPless DM
- E.g., assume WIMPless DM X is a scalar, Y is a fermion, interact with b quarks through λ_b (XY_Lb_L + XY_Rb_R) + m_YY_LY_R
- Naturally correct mass, cross section
 - m_X ~ 5-10 GeV (WIMPless miracle)
 - large σ_{SI} for $\lambda_b \sim 0.3 1$ (flip chirality on heavy Y propagator)

FUTURE PROSPECTS

SuperK can probe this region

Hooper, Petriello, Zurek, Kamionkowski (2009) Feng, Kumar, Strigari, Learned (2009) Kumar, Learned, Smith (2009)

- Tevatron and LHC can find connector particles: colored, similar to 4th generation quarks
- EW precision studies, direct searches, perturbativity → 300 GeV < m_y < 600 GeV

EXOTIC 4TH QUARKS AT LHC

 Entire m_X ~ 10 GeV region can be excluded by 10 TeV LHC with 300 pb⁻¹ (~7 TeV LHC with 1 fb⁻¹)

 Significant discovery prospects with early LHC data

20 fb⁻

420 440

480

m_{T'} (GeV)

460

5 fb

360

380 400

340

320

140

120

100

80

60

40

20

Exclusion for T' $\overline{T'} \rightarrow t X \overline{t} X$ at 10 TeV LHC

Alwall, Feng, Kumar, Su (2010)

SUPERWIMP DM

Feng, Rajaraman, Takayama (2003)

Consider supersymmetry (similar story in UED). There is a gravitino, mass ~ 100 GeV, couplings ~ M_W/M_{Pl} ~ 10⁻¹⁶

• Ĝ not LSP

Assumption of most of literature

SM NLSP Ĝ

Ĝ LSP

 Completely different cosmology and particle physics

SUPERWIMP RELICS

• Consider \tilde{G} LSPs: WIMPs freeze out as usual, but then decay to \tilde{G} after $M_{\rm Pl}^2/M_W^3$ ~ seconds to months

COSMOLOGY OF LATE DECAYS

Late decays impact light element abundances

- Lots of complicated nucleoparticlecosmochemistry
- BBN typically excludes very large lifetimes
- BBN excludes $\chi \rightarrow Z \tilde{G}$, but $\tilde{I} \rightarrow I \tilde{G}$ ok

7 May 10

LATE DECAYS AND ⁷Li/⁶Li

- ⁷Li does not agree with standard BBN prediction
 - Too low by factor of 3,
 ~5σ at face value
 - May be solved by convection in stars, but then why so uniform?
- ⁶Li may also not agree

Too high

- Late decays can fix both
- For mSUGRA, fixing both, and requiring Ω_{G̃} = 0.1 → heavy sleptons > TeV

MODEL FRAMEWORKS

- mSUGRA's famous 4+1 parameters: $m_0^2, M_{1/2}, A_0, \tan\beta, \operatorname{sign}(\mu)$
- Excluded regions: LEP limits, Stau LSP
- But this is incomplete: Missing $m_{\tilde{G}}$, assumes $m_0^2 > 0$

7 May 10

THE COMPLETE MSUGRA

 $M_{1/2}$

• Extend the mSUGRA parameters to

 $m_0^2, M_{1/2}, A_0, \tan\beta, \text{ sign}(\mu), \text{ and } m_{3/2}$

- If LSP = gravitino, then no reason to exclude stau (N)LSP region
- Also include small or negative

 $m_0 \equiv \operatorname{sign}(m_0^2) \sqrt{|m_0^2|}$

- This includes no-scale/gauginomediated models with m₀ = 0
- Much of the new parameter space is viable with a slepton NLSP and a gravitino LSP

CURRENT BOUNDS

Current Bounds

- LEP: slepton mass > 97.5 GeV, chargino > 102.5 GeV
- CDF Run I: slepton cross section < 1 pb</p>
- CDF Run II: top squark mass > 249 GeV

- D0 Run II: chargino mass > 200 GeV
- D0 Run II: slepton cross section < 0.1 pb
 - assumes only Drell-Yan pair production (no cascades)
 - require 2 slow, isolated "muons"
 - about a factor of 5 from unexplored mass territory

LHC DISCOVERY POTENTIAL

Rajaraman, Smith (2006)

- Look for Drell-Yan slepton pair production
- Require events with 2 central, isolated "muons" with
 - p > 100 GeV
 - p_T > 20 GeV

	Total cross-section	After Drell-Yan cuts		
Model A	18pb	$9\mathrm{pb}$		
Model B	$43 \mathrm{fb}$	28fb		
QCD	$10^2 { m mb}$	< 1pb		
$\gamma^*/Z \to \mu \mu$	$100 \mathrm{nb}$	$3\mathrm{pb}$		
W+jet	$360 \mathrm{nb}$	$< 40 \mathrm{fb}$		
Z+jet	$150 \mathrm{nb}$	$7\mathrm{pb}$		
$t\bar{t}$	$800 \mathrm{pb}$	430fb		
WW,WZ,ZZ	$2.5\mathrm{nb}$	$150 \mathrm{fb}$		

Time delay of	0 ns	1 ns	2ns	3ns	4ns	5ns
Drell-Yan; background	10pb	1.35pb	$3.3 \mathrm{fb}$	0.2ab	$< 0.1 \mathrm{ab}$	$< 0.1 \mathrm{ab}$
Drell-Yan; Model A	$9\mathrm{pb}$	$5.2 \mathrm{pb}$	$2.9 \mathrm{pb}$	$1.8 \mathrm{pb}$	1.1 pb	$750 \mathrm{fb}$

 Finally assume TOF detector resolution of 1 ns, require both muons to have TOF delays > 3 ns

• Require 5σ signal with S > 10 events for discovery

- Model A is "best case scenario"
- Lesson: Very early on, the LHC will probe new territory

CHARGED PARTICLE TRAPPING

- SuperWIMP DM → metastable particles, may be charged, far more spectacular than misssing E_T (1st year LHC discovery)
- Can collect these particles and study their decays
- Several ideas
 - Catch sleptons in a 1m thick water tank (up to 1000/year)

Feng, Smith (2004)

Catch sleptons in LHC detectors

Hamaguchi, Kuno, Nakawa, Nojiri (2004)

Dig sleptons out of detector hall walls

De Roeck et al. (2005)

LIGHT GRAVITINO DM

- The original SUSY DM scenario
 - Universe cools from high temperature
 - Gravitinos decouple while relativistic, $\Omega_{\tilde{G}} h^2 \approx m_{\tilde{G}} / 800 \text{ eV}$
 - Favored mass range: keV gravitinos

Pagels, Primack (1982)

- This minimal scenario is now excluded
 - Ω_{G̃} h^2 < 0.1 → m_{G̃} < 80 eV
 - Gravitinos not too hot $\rightarrow m_{\tilde{G}}$ > few keV
 - keV gravitinos are now the most disfavored

Viel, Lesgourgues, Haehnelt, Matarrese, Riotto (2005) Seljak, Makarov, McDonald, Trac (2006)

- Two ways out
 - Λ WDM: $m_{\tilde{G}}$ > few keV. Gravitinos are all the DM, but thermal density is diluted by low reheating temperature, late entropy production, ...
 - Λ WCDM: $m_{\tilde{G}}$ < 16 eV. Gravitinos are only part of the DM, mixed warm-cold scenario

CURRENT BOUNDS

LIGHT GRAVITINOS AT THE LHC

Lee, Feng, Kamionkowski (2010)

CONCLUSIONS

- DM searches are progressing rapidly on all fronts
 - Direct detection
 - Indirect detection
 - LHC
- Proliferation of DM candidates, but many are tied to the weak scale
- In the next few years, these DM models will be stringently tested