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‘ Statistical Mechanics with Friction ‘
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Boyer, Guazzelli, Pouliquen (201 1)

1.5

=%
a1
—

-

I

3 05

0 0.05

Uof

AN
Tas

o
AN T
- e "
N

.
O

*A “universal” relationship between the
macroscopic friction coefficient and the viscous
number

*When a suspension is sheared at constant volume,
the shear and normal viscosities can be expressed
in terms of the friction coefficient and the viscous
number:
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2D Systems: Force Tilings

particle n Forces at contacts can have normal and

tangential components. Impose force balance
on every grain, and use Newton’s third law

Force Moment Tensor
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Force Tilings Constructed from DST Simulations
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For now, we have set normal
: stress difference to zero, then
DHCE RN RN area of the box, A, is the
OSSR Y single shape parameter.
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Point Patterns: Vertices of Force tilings
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The set of points is represented by “height vectors” : h



Pair Correlation Functions
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Can these microscopic correlations lead to changes
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Stress Anisotropy from Data
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Figure: Observed = 7/P from the data.



Constructing a Thermal Ensemble

@ Using the pair correlations we can construct a potential
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that induces an anisotropy in the interactions based on the
observed correlation functions.
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@ The ensemble of configurations that are sampled in the
non-equilibrium dynamics are assumed to obey a statistical
mechanical description, with each configuration C occurring with a
probability p(C) oc exp(—V/(C)).



Statistical Mechanics

@ Shear stress sets the pressure scale (and Area): we control this by a
Lagrange multiplier f; (o).

@ The partition function of the system is given by

1 [ X
Zop = N A dAexp (—pr (O’)A) X
N
/Hdh,exp _ZV;(R_HJ') ’ (2)
i=1 ij

exp(—es(A))

where the positions H,- are confined to be within the box defined by
A= (T, Ty).



Testing the Potentials

Figure: a) Observed pair correlation functions at o,, = 2, at packing fractions
¢ = 0.76,0.785,0.79. b) Potentials constructed using the pair correlation
functions (c) A comparision with pair correlations from Monte Carlo simulations.
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Sampling the Energy Function

@ We perform a Monte Carlo sampling of the energy function

exp(_ed,(A)):/Af[ldﬁ,-exp ZV"’F Ml A=0? (2-1). (3)
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Figure: Sampled Energy Function for N = 512.
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Free Energy Function

@ The free energy of the system is then given by

Fop = —log Z; 4. (4)

@ The free energy per particle is given by

() = 500?45 1) —tog o2 (5 1) + ol /. (9



Free Energy Function

fy*=0.002, N = 3000
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Figure: Free Energy per particle, N = 3000, f,; = 0.002.
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Variation of p with ¢
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Figure: Variation of p with ¢ at different imposed shear stresses.
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Rheology from 1

@ We can use pu to predict the viscosity
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Figure: Predicted viscosity at different packing fractions ¢. With u. ~ 0.385.



Improving the Theory
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@ We can improve the interaction potential.

@ We can include normal stress fluctuations.

@ Finally, we can measure the autocorrelations in the components of
the stress tensor and directly predict the viscosity.



