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Static friction Fs
 minimum force needed to initiate sliding.

Kinetic friction Fk(v) 
 force to keep sliding at velocity v.

Typically, Fk(v) varies only as log(v) and Fs>Fk(v) at low v

 Load
F

Amontons’ Laws (1699): 
 Friction  load  constant =F/Load (or =dF/dLoad) 
 Friction force independent of apparent contact area Aapp.
But: Amontons coated all surfaces with pork fat

F Aapp for soft, flat solids, polymers, tape
 often changes with load  friction for load ≤ 0
Friction depends on history (rate-state models)
Laws violated in nanoscale experiments & simulations
 solids slide like fluids, fluids stick like solids

Friction Laws ?
v



Davinci’s Experiments  =0.25
Friction Laws ?

Pitenis, Dowson, Sawyer, 
Tribol Lett 56, 509 (2014)
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Pork fat  finger grease



Common view since mid 1900’s
Surfaces rough on many length scales

and usually find Areal << A0
Measurements and theory  Areal  Load in many cases
 get Amontons’ laws if constant shear stress shear

friction = Areal shear Load 
Also explains many exceptions to Amontons’ laws

Adhesion Areal nonzero at zero load, still have friction
Friction A0 for soft materials because Areal ≈A0
Friction Areal predicted by continuum theory for 

single asperities with radii from nm to mm
 N2/3 for non-adhesive solids (Hertz theory)

Bowden & Tabor – hard sphere on polymer 

Areal

A0

Friction Proportional to Real Area?



How Do Surfaces Interlock to Produce shear?
Geometric explanation (Amontons, Belidor, Parents, Euler, Coulomb)
 Surfaces are rough – mesh together 
 Friction = force to lift up ramp 

formed by bottom surface 
 F=N tan  =tan 
Belidor (1737) =1/3 –
sliding of frictionless cannon balls - soil

F

N





How Do Surfaces Interlock to Produce shear?
Geometric explanation (Amontons, Belidor, Parents, Euler,Coulomb)
 Surfaces are rough 
 Friction = force to lift up ramp 

formed by bottom surface 
 F=N tan  =tan 
Problems:
 Most surfaces can’t mesh
 Roughening can reduce  (hard disks)
 Monolayer of grease changes  not roughness
 Once over peak, load favors sliding  kinetic friction=0
 Friction proportional to apparent area not load in some cases
Static friction  Force to escape metastable state

How can two surfaces always lock together?
Kinetic friction  Energy dissipation as slide

Why is this correlated to static friction? Why does T matter?

F

N





Molecular Dynamics up to Micrometer Scales
Challenge: elastic interactions - long-range →need cube of size L3

sound propagation time ~L. Compute time ~L4.
Use multiscale approach that scales as L2 lnL for L~ 104 atoms

At surface - molecular dynamics (MD) simulations of ~108 atoms
At depth where displacements are small only need linear response 
Use atomic Greens function in bulk

Seamless boundary conditions
Similar to Campana & Muser
Extended to long range interactions,
analytic GF, multibody potentials

EAM, Stillinger-Weber, …
Periodic boundaries or semi-infinite

Campaña, Müser, Phys. Rev. B 74, 075420 (2006); Pastewka, Sharp, Robbins, Phys. Rev. B86, 075459 (2012)

L= 8192d

d



What About Shear Stress in Areal?
Rigid Incommensurate Surfaces – No Net Friction!

1

τ
τmax

-1

x

Rotated θ = 0.1 
radians

Commensurate Rotated θ = 0.44 
radians

λ = 1/θ

a

Commensurate: Friction  load for repulsive, area for adhesive 



Hirano & Shinjo – Contacting crystals typically incommensurate, 
No common period → lateral force averages to zero, Fs=0

Even identical surfaces become incommensurate if rotated
Consistent with many experiments & simulations

Fs=0 for incommensurate monolayers on substrate (Krim et al.)
Solids more slippery than fluid of same element 

Structural Superlubricity – Rigid Surfaces

Cieplak, Smith, Robbins, 
Science 265, 1209 (1994)

 s
≡

m
v/

F k

Kr on Au

 exp.
▲sim.

liquid

crystal Friction proportional to 
velocity - Fk=v m/s



Hirano & Shinjo – Contacting crystals typically incommensurate, 
No common period → lateral force averages to zero, Fs=0

Even identical surfaces become incommensurate if rotated
Consistent with many experiments & simulations in vacuum

Fs~0 for misaligned mica, graphite, MoS2, antimony, adsorbed gas
[Hirano et al ‘91, Krim et al ‘90, Dienwiebel et al ‘04, Martin et al ‘93, Dietzl et al ’08]

Structural Superlubricity – Rigid Surfaces

Dienwiebel et al. ‘04

Graphite

Antimony

A-1/2 in vac.

Dietzel et al. PRL 101, 125505, ‘08



Hirano & Shinjo – Contacting crystals typically incommensurate, 
No common period → lateral force averages to zero, Fs=0

Even identical surfaces become incommensurate if rotated
Consistent with many experiments & simulations in vacuum

Fs~0 for misaligned mica, graphite, MoS2, antimony, adsorbed gas
[Hirano et al ‘91, Krim et al ‘90, Dienwiebel et al ‘04, Martin et al ‘93, Dietzl et al ’08]
Dietzel et al. PRL 111, 235502 (2013)

Structural Superlubricity – Rigid Surfaces

Antimony

FA1/2 ; A-1/2 in vac. FA1/4 A-3/4 in vac.

 const in air!



Elasticity Eliminates Structural Lubricity

d

Shear modulus G
Poisson ratio ν=0.5

rigid Represent rigid surface with 
sinusoidal lateral force

fx = f0 sin(2πx/d)
fy = f0 sin(2πy/d)

Slide corrugation potential quasi-statically, minimize the energy
Vary ratio of stiffness G to interfacial shear stress max
Key length = interfacial dislocation core size bcore = dG/max
Minimum lateral distance over which can change registry by d

f0 ൌ	τmax	d2

Similar behavior for full sphere on 
flat simulation  linear response 
not influenced by curvature

“Adhesive model”

R



Commensurate Slides via Dislocations at Large a/bcore
Small – coherent Large – dislocation assisted
a = 30 d        bcore = 128 d a = 126 d       bcore = 1 d

‐2 20.0

Fx

‐0.2 0.20.0

Fx



Commensurate Adhesive Case: Three Friction Regimes
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bcore≡ dG/τmax

Peierls
depends
on bcore

I II III

Agrees with scaling of 
Hurtado, J. A. & Kim, 
K.-S. 1999 Proc. R. 
Soc. Lond A 455, 
3363–3384.

bcore

a/bcore

τfric – Total static    
friction per area

τmax – Max local stress 
a – contact radius
bcore – core size
d – atomic spacing
G – shear modulus bcore/d

bcore

Peierls

Large scales –
Low friction!
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Elasticity  Breakdown of Structural Superlubricity

τfric – Static friction force per area
τmax – max traction parameter, d – atomic size
bcore =dG/ τmax – dislocation core size
Large a/d,  τfric=τPeierls  G exp[-2G/τmax]

θ = 0.44 rads

Contact radius  a/d

G/max

Rigid
fric a-3/2



bcore/d=G/max

Static friction  Peierls Stress as a/bcore
Single dislocation Peierls  G exp[-2bcore/d] measured separately

material stiffness

Very large commensurate and 
incommensurate contacts both 
have shear stress ~߬௉௘௜௘௥௟௦

௘ௗ௚௘

Small friction for large bcore
but finite, not zero

edge

commensurate
incommensurate

Phys Rev B93, 
R121402 (2016)



Imry-Ma argument – Compare deformation and locking energies
Deform on scale L, get interfacial energy ~ τ ௗିଵ, d=dimensionܮ
Cost of deformation on scale L:  ݍܮܩଶܮௗିଵ ൌ ௗିଶwith q=1/Lܮܩ
For d=2, disorder wins at large L: τ ܮ ൐ ܩ –raindrops on windows
For d=3  same scaling at large L: ߬ܮ	~	ܮܩ - marginal dimension
Expect pinning at exponentially long scales, friction 	߬ expሺെ ௖ீ

ఛ
ሻ

 Similar to exponential scaling for Peierls stress!

AFM
tip

Asperity on rough

What About Disordered Surfaces?

Analytic work: Persson & Tossati, Volmer & Natterman, Caroli & Nozieres, Müser



Large Contacts  Constant Shear Stress
Rigid – Stress scales with 1/a
Elastic- Stress saturates at stress that drops exponentially with G
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Stiffness‐dependent 
separation length scale



Incommensurate, commensurate and amorphous surfaces all have 
similar friction at large scales – drops exponentially with G

ି௖ ீఛబ

Same for Amorphous, Commensurate, Incommensurate



Experimental Measurements: Dietzel 2017

• See saturation at large 
areas for MoS2.

• Radius ~56nm~150d

• Larger chemical 
interaction energy 
leads to better 
frictional locking than 
for HOPG

Amorphous Sb on MoS2 , HOPG



What Should Length Scale of Crossover Be?
FCC crystal – two identical surfaces G/0~ 2.2   scales ~ 1nm
Graphite, MoS2 have low shear strength between planes very 
high stiffness within planes – expect much larger G/0
Potential contribution to performance as solid lubricants



Simulate rigid tips on flat elastic crystal
a > 103 d ~1m and R up to 105d, d=atomic spacing

Tip is commensurate, incommensurate or amorphous
Local friction – constant stress or local Amontons’s law
Three regimes of sliding:
1) Small contacts: rigid, smooth sliding, Fkin~0

Fstat large only for commensurate
2) Intermediate: a > interfacial dislocation width

sliding through dislocations at decreasing Fstat,
stick-slip motion, Fkin/Fstat rises

3)  Large contacts: Elasticity leads to scale independent  
friction stress for adhesive local friction
Elasticity leads to rising friction in repulsive contacts

Friction not zero but very weak for very large stiffness
IF surfaces are clean and elastic

Conclusions: Scale Dependence In Single-Asperity Contact



Friction Mechanisms in Contacts
Geometrical Interlocking:  F=N tan 
Unlikely to mesh, F goes up as smooth
Kinetic friction vanishes

Elastic Metastability: 
Marginal dimension - exponentially 
weak in disorder or lateral coupling
Mixing or Cold-Welding
Most likely for clean, unpassivated
surfaces in vacuum
Plastic Deformation (plowing)
Load and roughness dependent
High loads, sharp tips

Mobile third bodies → “glassy state”
hydrocarbons, wear debris, gouge, …
Glass seen in Surface Force Apparatus,
Robust friction mech. on many scales



Welding at Interfaces

Thermally activated covalent bonding of silica: friction ~log(time)
Li, Liu, Szlufarska, 
Trib. Lett. 56: 481 (2014)
Li, Tullis, Goldsby, Carpick
Nature 480, 233 (2011)

Metals weld in vacuum conditions
- Scale, orientation dependence
Sørensen, Jacobsen & Stoltz, Phys. Rev. B 1996
Bowden and Tabor for many metal pairs
Landman, Fujita, Matsukawa, …
PMMA in Fineberg experiments
– energy release ~ fracture energy
Strength of polymer weld depends on contact
time and pressure - ~ 2 entanglements bulk
Ge, Pierce, Perahia, Grest, Robbins
PRL 110, 098301 (2013); Macromol (2014)

Cu



Friction from Plastic Deformation
Belak and Stowers, Fundamentals
of Friction,1992
Many other examples: Molinari, 
Szlufarska, …

No sliding friction (cutting force) 
until plastic deformation occurs

Geometry dependent

onset of yield



Molecules adsorbed from air, wear debris, elastomer segments,
and other mobile “third bodies” lock surfaces together, Fs ≠ 0 

Glass: s=0 +  p  Fs=0 Areal +  N     (He, Müser, Robbins, Science ‘99)
 can explain Amontons’s laws without a constant shear
 only depends on molecular geometry: polymers ~0.1 to 0.2

Reflects slope of ramp formed by adsorbed molecules
⟹	Ramp	keeps	rearranging	so	always	uphill

 Thermal activation model explains why kinetic friction near static
and rises like (kBT/V*) log(v)
with atomic scale volume V*

Glassy “Pork Fat” Layer Leads to Amontons’ Laws



Molecules adsorbed from air, wear debris, elastomer segments,
and other mobile “third bodies” lock surfaces together, Fs ≠ 0 

Find s=0 +  p  Fs=0 Areal +  N     (He, Müser, Robbins, Science ‘99)
 can explain Amontons’s laws without a constant shear
 is indep. of many parameters not controlled in experiment

Reflects slope of ramp formed by adsorbed molecules
⟹	Ramp	keeps	rearranging	so	always	uphill

 Thermal activation and aging give rate-state dependence:
=A ln(v)+ B ln(tw) 

3rd Body Leads to Amontons

-3                 -2               -1
log10(v tLJ/)



Adsorbed layers give F load for AFM tips and 
decrease variability of friction with tip geometry

Load ()

Fr
ic

tio
n 

(


)

■ amorphous with 
adsorbed layer

■ incommens. with
adsorbed layer

○ bare amorphous

○ bare incommens.

Short chains



Surface Force Apparatus Measurements
Simple fluids confined between mica plates – flat over ~100m
See layered structure – period = molecular diameter
Gee, McGuiggan, Israelachvili J. Chem. Phys. 93, 1895 (1990)
Also seen by Jacob Klein, Steve Grannick, Susan Perkins, …

n~5

Cheng & Robbins PRE89, 
062402 (2014)



Surface Force Apparatus Measurements
Simple fluids confined between mica plates – flat over ~100m
Many act like solids when a few layers thick – up to ~2.5nm
May have constant  or stress S
Also glass transition seen 
in simulations with decrease
in # layers m or increase in p
Thompson, Grest, Robbins, 
PRL 68, 3448 (1992)



Surface Force Apparatus Measurements
Simple fluids confined between mica plates – flat over ~100m
Many act like solids when a few layers thick – up to ~2.5nm
May have constant  or stress S ~ yield stress of glass
Gee, McGuiggan, Israelachvili J. Chem. Phys. 93, 1895 (1990)
Also seen by Jacob Klein, Steve Grannick, Susan Perkins, …

n=2 n~5



Surface Force Apparatus Measurements
Hydrocarbon (HC) and 
fluorocarbon (FC) monolayers 
Better fit to constant shear stress 
than constant 

McGuiggan, J. Adhesion 80, 395 
(2004)



Surface Force Apparatus Measurements
Purely repulsive interactions tend to give friction  load

small adhesive 0:  s=0 +  p  Fs=0 Areal +  N
Squalane glassy to 3-5 layers
Water with double layer – ~0.02 with 1-2 water layers,

KCl from 0.01 to 0.5M; pressure 10-50MPa
Gao, Luedtke, Gourdon, Ruths, Israelachvili, Landman, J. Phys. 
Chem. B108, 3410 (2004)

Self-assembled
monolayer

0.5M KCl
0.2-0.5nm

squalane 1.7-2.5nm



Friction Mechanisms in Contacts
Geometrical Interlocking:  F=N tan 
Unlikely to mesh, F goes up as smooth
Kinetic friction vanishes

Elastic Metastability: 
Marginal dimension - exponentially 
weak in disorder or lateral coupling
Mixing or Cold-Welding
Most likely for clean, unpassivated
surfaces in vacuum
Plastic Deformation (plowing)
Load and roughness dependent
High loads, sharp tips

Mobile third bodies → “glassy state”
hydrocarbons, wear debris, gouge, …
Glass seen in Surface Force Apparatus,
Robust friction mech. on many scales



Elastic surfaces – Area  Load – constant pressure
Key surface property = h’rms = rms slope of surface
Repulsive contacts - prep = E’ h’rms/rep E’=E/(1-2)
Adhesion - patt = w/r ;  w=energy/area, r range

Surfaces Often Rough on Many Scales – Self-Affine
Archard  Bumps on Bumps on Bumps

H=0.5
ℓ

h

Mount Everest Clay 10x10m 

www.phys.ntnu.no

Examples 
with
H=0.8

h  ℓ H



Elastic surfaces – Area  Load – constant pressure
Key surface property = h’rms = rms slope of surface
Repulsive contacts - prep = E’ h’rms/rep E’=E/(1-2)
Adhesion - patt = w/r ;  w=energy/area, r range

Hertz – ு
ேభ/య

గ
ସாᇲ

ଷோ

ଶ/ଷ

Surfaces sticky only if break link between E’ and w
– make surfaces very soft  < 1MPa

Surfaces Often Rough on Many Scales – Self-Affine
Archard  Bumps on Bumps on Bumps

Mount Everest Clay 10x10m 

www.phys.ntnu.no

Examples 
with
H=0.8



Transition from AN to A N2/3 at Nc=E’R2 (9/16)(h’rms/)3

Hard wall                     Soft wall                        Adhesive

Area Divided By Hertz Prediction

Black- analytic, Red h’rms=0.1 ,   Blue h’rms=0.01  ,  a0~0.3nm
Parameter free analytic interpolation captures statistical behavior
Deviation at small loads – just a few asperities 
Consistent with frictionN2/3 for metal sphere on polymer, etc.
Small spheres act like smooth – first asperity ~ sphere.

R=1000a0

R=100,000a0

30nm

30m



Parallel plates are hard to align ⟹ experiments use sphere-on-flat
Like parallel at small loads, Hertz at large loads
Top – contact in orange, solid=Hertz radius, 

Bottom – black=mean pressure at a given radius 
blue= mean pressure in contacting regions
red= flat surface prediction for prep

[Pastewka and Robbins, Applied Physics Letters108, 221601 (2016)]

Sphere on Flat



Conclusions
• Have analytic understanding of relation between 

contact area and load: prep=N/A=E’/reph’  please measure

• Parameter-free theory for onset of adhesion
Adhesion rare, typical w/E’la << atomic spacing

• Parameter-free theory for sphere on flat contact
• Proportionality between area and load is not enough 

to explain Amontons’ laws even in nonadhesive case
 Unless h’ is a material parameter?
 Clean surfaces - friction exponentially weak
 Plowing, wear, … geometry changes 
 Welding may give constant  for polymers?

• Third bodies give s=0+p, material property of body
  independent of uncontrolled exp. parameters

gives rate state behavior with right energy scale 


