Detecting anomalies in 2D topological phases

Michael Levin *University of Chicago*

Chenjie Wang

Perimeter Institute

(Wang, Levin, arXiv:1610.04624)

What this talk is about:

$$\eta_1 = \frac{1}{D} \sum_{a \in \mathcal{C}} d_a^2 \cdot e^{i\theta_a}$$

$$\eta_1 = \frac{1}{D} \sum_{a \in \mathcal{C}} d_a^2 \cdot e^{i\theta_a} \qquad \eta_2 = \frac{1}{D} \sum_{a \in \mathcal{C}} d_a \cdot \mathcal{T}_a^2 \cdot e^{i\theta_a}$$

$$\eta_f = \frac{1}{\sqrt{2}D} \sum_{a \in \mathcal{C}_f} d_a \cdot \tilde{\mathcal{T}}_a^2 \cdot e^{i\theta_a}$$

Definition of time-reversal symmetric topological phase

2D gapped quantum many-body system with:

• (Unbroken) time reversal symmetry

• Anyon excitations

For now, focus on **bosonic** topological phases

Data

• Set of anyon types: $C = \{a, b, c, ...\}$

• Fusion/braiding data: $d_a, N_{ab}^c, F_{abc}^d, R_{ab}^c, \dots$

• Time-reversal permutation: $a \to \mathcal{T}(a)$

• Kramers degeneracy: If $\mathcal{T}(a) = a$, then

either
$$\begin{cases} a \text{ is Kramers singlet: "} \mathcal{T}_a^2 = +1" \\ a \text{ is Kramers doublet: "} \mathcal{T}_a^2 = -1" \end{cases}$$

Some physical constraints

1.
$$R_{\mathcal{T}(a)\mathcal{T}(b)}^{\mathcal{T}(c)} R_{\mathcal{T}(b)\mathcal{T}(a)}^{\mathcal{T}(c)} = (R_{ab}^c R_{ba}^c)^*$$

2.
$$\mathcal{T}(\mathcal{T}(a)) = a$$

3.
$$\mathcal{T}_1^2 = 1$$

4. For Abelian phases,

(a)
$$\mathcal{T}(a \times b) = \mathcal{T}(a) \times \mathcal{T}(b)$$

(b)
$$\mathcal{T}_{a \times b}^2 = \mathcal{T}_a^2 \mathcal{T}_b^2$$

Note: <u>Not</u> a complete list

Anomalous topological phases

• Cannot be realized in strictly 2D system

• Can be realized on the surface of 3D SPT phase

Example 1: "eTmT" phase

$$C = \{1, e, m, em\} = \text{Toric code}$$

$$\theta_{e,m} = \pi; \quad \theta_e = \theta_m = 0$$

$$\mathcal{T}$$
 perm. = 1;

$$\mathcal{T}_e^2 = \mathcal{T}_m^2 = -1$$

Example 2: "eFmF" phase

$$\mathcal{C} = \{1, e, m, em\}$$

$$\theta_{e,m} = \pi; \quad \theta_e = \theta_m = \pi$$

$$\mathcal{T}$$
 perm. = 1;

$$T_e^2 = T_m^2 = 1$$

Behavior under stacking

$$\implies Z_2 \times Z_2$$
 anomaly structure

Two questions

How can we show that "eTmT" and "eFmF" are anomalous?

How can we detect if a **general** top. phase carries an "eTmT" or "eFmF"-type anomaly?

Motivation

1. A step toward bulk/boundary correspondence

2. Unitary vs. anti-unitary symmetry

(a) Unitary case:
$$\nu(f,g,h,k) = R_{\omega(h,k),\omega(f,g)} F_{\omega(g,h),\omega(f,gh),\omega(fgh,k)} F_{\omega(g,h),\omega(gh,k),\omega(f,ghk)}^{-1} \times F_{\omega(f,g),\omega(h,k),\omega(fg,hk)} F_{\omega(f,g),\omega(fg,h),\omega(fgh,k)}^{-1} \times F_{\omega(h,k),\omega(g,hk),\omega(f,ghk)} F_{\omega(h,k),\omega(f,ghk)}^{-1}$$

(b) Antiunitary case: ??

Anomaly indicator for "eFmF"

$$\eta_1 = \frac{1}{D} \sum_{a \in \mathcal{C}} d_a^2 \cdot e^{i\theta_a}$$

 d_a : "quantum dimension" of a

 $= \lim_{N\to\infty} (GS \text{ degeneracy of } N \text{ } a\text{'s})^{1/N}$

 $e^{i\theta_a}$: "topological spin" of a $= \frac{1}{d_a} \sum_c d_c R_{aa}^c$

$$D = \sqrt{\sum_{a} d_a^2}$$

Why is η_1 an "anomaly indicator"?

- 1. η_1 takes only two values: ± 1
- 2. $\eta_1 = -1 \implies \text{top. phase is anomalous}$

Follows from general 2D relation:

$$\frac{1}{D} \sum_{a} d_a^2 e^{i\theta_a} = e^{2\pi i c_-/8}$$

$$\eta_1$$

Indicator for "eTmT"?

Our proposal:

$$\eta_2 = \frac{1}{D} \sum_{a \in \mathcal{C}} d_a \cdot \mathcal{T}_a^2 \cdot e^{i\theta_a}$$

$$\mathcal{T}_a^2 = \begin{cases} 1, & \text{if } \mathcal{T}(a) = a, \text{ and } a \text{ is Kramers singlet} \\ -1, & \text{if } \mathcal{T}(a) = a, \text{ and } a \text{ is Kramers doublet} \\ 0, & \text{if } \mathcal{T}(a) \neq a \end{cases}$$

Conjecture:

- 1. η_2 takes only two values: ± 1
- 2. $\eta_2 = -1 \implies \text{top. phase is anomalous}$

Example: Toric code

$$\eta_2 = \frac{1}{2}(1 + \mathcal{T}_e^2 + \mathcal{T}_m^2 - \mathcal{T}_e^2 \mathcal{T}_m^2)$$

η_2	$\mathcal{T}_m^2 = +1$	$\mathcal{T}_m^2 = -1$	Realizable in 2D
$\mathcal{T}_e^2 = +1$	1	1 🖍	
$\mathcal{T}_e^2 = -1$	1	-1 🔨	eTmT

Evidence

- 1. $\eta_2 = 1$ for several large classes of strictly 2D systems:
 - (a) Quantum double models with group G

(b) Double layer systems: $\mathcal{B} \times \overline{\mathcal{B}}$

Evidence

2. $\eta_2 = -1$ for known anomalous phases.

3. η_2 is multiplicative under stacking:

$$\eta_2(\mathcal{C} \times \mathcal{C}') = \eta_2(\mathcal{C}) \cdot \eta_2(\mathcal{C}')$$

4. η_2 is invariant under anyon condensation transitions

Alternative formula for $\eta_1 \cdot \eta_2$ in Abelian case

$$\eta_1 \eta_2 = e^{i\theta_a}$$

where a is any anyon obeying:

$$e^{i\theta_{a,b}} = \mathcal{T}_b^2$$
 for all invariant anyons b

Agrees with conjecture of Chen, Burnell, Vishwanath, Fidkowski (2015).

Fermionic case

Assume $\mathcal{T}^2 = P_f$:

 Z_{16} anomaly $\leftrightarrow Z_{16}$ class. of topological s.c

What is corresponding indicator?

Our proposal:

$$\eta_f = \frac{1}{\sqrt{2}D} \sum_{a \in \mathcal{C}_f} d_a \cdot \tilde{\mathcal{T}}_a^2 \cdot e^{i\theta_a}$$

$$\mathcal{T}_a^2 = \begin{cases} 1, & \text{if } \mathcal{T}(a) = a, \text{ and } a \text{ is Kramers singlet} \\ -1, & \text{if } \mathcal{T}(a) = a, \text{ and } a \text{ is Kramers doublet} \\ \pm i, & \text{if } \mathcal{T}(a) = a \times f \\ 0, & \text{otherwise} \end{cases}$$
 local fermion

$$\tilde{\mathcal{T}}_a^2 = \begin{cases}
-i\mathcal{T}_a^2, & \text{if } \mathcal{T}(a) = a \times f \\
\mathcal{T}_a^2, & \text{otherwise}
\end{cases}$$

Conjecture:

1. η_f takes 16 values: $e^{\nu i\pi/8}$, $\nu = 0, ..., 15$

2. $\eta_f = e^{\nu \pi i/8} \implies \text{top. phase lives on surface}$ of index ν topological s.c.

Example: $SO(3)_{6,+}$

$$\mathcal{C} = \{1, f, s, \bar{s}\}$$

$$d_s = d_{\bar{s}} = 1 + \sqrt{2}; \quad \theta_s = -\theta_{\bar{s}} = \pi/2$$

$$\tilde{\mathcal{T}}_s^2 = -\tilde{\mathcal{T}}_{\bar{s}}^2 = 1$$

$$\eta_f = \frac{1}{\sqrt{16 + 8\sqrt{2}}} [1 + 1 + (1 + \sqrt{2})i + (1 + \sqrt{2})i]$$
$$= e^{3\pi i/8}$$

 \implies Anomalous phase with $\nu = 3$

How to prove the conjecture?

1. **Partition function approach:** Construct a 3+1D bulk TQFT for each 2+1D phase C. Show that TQFT partition function obeys:

$$Z_{\mathcal{C}}(M) = \eta_2(\mathcal{C})$$

where M is some fixed closed (non-orientable) manifold.

2. CFT approach: Prove $\eta_2 = 1$ for time-reversal symmetric CFT.

Questions

1. Can we relate η_1 , η_2 and η_f to measurable *bulk* quantities?

2. Are there other types of anomalies?