Numerical studies of Composite Fermion Liquid

* Scott Geraedts, Michael Zaletel, Roger Mong, Max Metlitski, Ashvin
Vishwanath, and OIM [Science 352, p.197 (2016)]
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* Review of Halperin-Lee-Read (HLR) theory (talks by Senthil, Haldane,
Young, Metlitski, Wang) and relation to other gapless fractionalized
phases

* Infinite-cylinder DMRG study of the half-filled lowest Landau level with
Coulomb interactions - evidence for the Composite Fermion Liquid (CFL)
state

* Particle-hole symmetry in the LLL and Son's proposal for PH-symmetric
CFL with “Dirac composite fermions” (talks by Senthil, Seiberg, Haldane,
Metlitski, Wang)

* Evidence for the Son's theory in the DMRG study

*VMC study of entanglement entropy in trial CFL wavefunctions

* Future directions



Halperin-Lee-Read (HLR) composite fermion liquid

2d electron gas in strong magnetic field at filling fraction v=1/2, i.e.,
two magnetic flux quanta per electron:
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“Flux attachment” (Chern-Simons) transformation and “flux-smearing”
mean field -> “composite fermions” see zero average field and form
“Composite Fermion Liquid” (CFL). Schematic wavefunction:
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Alternative parton description: filled Fermi sea of T fermions
c=dydyf, Yo=Yy Vg2 ¥s
dividing electron charge:
e=e¢e/2 +e/2 +0
d; and d, see the external magnetic field, each at an effective filling
fraction 1, while f's see no field and form a Fermi sea state
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Beyond meanfield - Chern-Simons field theory
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HLR theory: RPA-like treatment & predictions for experiments
CFL is a non-Fermi-liquid (non-FL)!

* Obvious non-FL aspect: Electrons are gapped, but the state is still
metallic

* More subtle non-FL aspect: Beyond mean field, there is also an
emergent fluctuating gauge field, and the CFL does not have a
quasiparticle description (unlike FL)



Similarity to other “non-FL states”
~ gapless fractionalized states

Many microscopic non-FL theories obtained via parton construction with
fermionic partons forming some Fermi sea

Spinon Fermi sea spin liquid: § — fJf%f, f;fT + fffl — 1

\Ijspin — PG ( )

Candidate model: Heisenberg plus ring exchanges on a triangular lattice -
relevant for organic spin liquids near metal-Mott insulator transition

The largest unbiased numerical study to date (Block, Sheng, OIM, & Fisher):
DMRG on a 4-leg ladder, finding 343 slices through the spinon Fermi seas
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More non-FLs and “slicing through the FSs” DMRG

Bose metal: bf =dld},,  didy = didy = b'b e
d2
\Ijboson — \del \de2 — detl detQ :PG ( l )

Candidate model: Bosons with hopping plus frustrating ring exchanges
on a square lattice

The largest unbiased study to date (Mishmash, Block, Sheng, OIM, Fisher):
DMRG on a 4-leqg ladder; 442 slices through the parton Fermi seas:
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Electron “d-wave metal”: c:; — did;f;
\Ijelectron — detl detQ detTwL

Candidate model: Electron t-) model plus electron ring exchanges on a
square lattice

The largest unbiased study (Jiang, Block, Mishmash, Sheng, OIM, Fisher):
DMRG on a 2-leg ladder; 2+1+1+1 slices through the parton Fermi seas



Numerical study of the half-filled Landau level
S. Geraedts, M. Zaletel, R. Mong, M. Metlitski, A. Vishwanath, & OIM

Electrons in continuum with Coulomb interactions, on a cylinder
of infinite length and finite circumference L,
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Solve the Coulomb interactions projected into the lowest Landau level

(LLL) using infinite-cylinder DMRG (developed for FQH by M.Zaletel,
R.Mong, F.Poliman)

CFL state in 2d LLL: [magnetic length {5 = \/he/(eB) ]
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CFL state on a cylinder with finite L: slice through the CF Fermi sea
with discrete k, in steps of 2n/L,




Slicing through the CF Fermi sea

Ke = 1 in units where magnetic lengthislg =1

ky=27nn,/L, (periodic boundary conditions for f)
0 <Ll,<2m 1slice
2t < L, < 4mn: 3slices

[ .
\ /
U dn<L,<6bm 5 slices
on < Ly < 8m: 7 slices
®

ky=2n(ny+1/2)/L, (anti-periodic b.c. for f)
t<Ll,<3m 2slices
3n <L, < 5mn: 4slices
5t < L, < 7n: 6 slices
/n <L, <9m: 8slices

Electrons have periodic b.c. in all cases. The p.b.c./a.b.c. for f's can be
accommodated by b.c. for one of the d-partons. Infinite-DMRG can access
different such sectors!



Slicing through the CF Fermi sea
- entanglement entropy (EE) study
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Infinite-cylinder DMRG: measure EE of half-cylinder with the other hallf.
“Finite-bond-dimension scaling” (developed by F.Pollman and J.Moore):

C
S = g log(ﬁ) --> can extract central charge c
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Entanglement entropy S

Slicing through the CF Fermi sea
- entanglement entropy (EE) study
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Correlation length ¢ ky=27nn,/L,
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Quasi-1d gauge theory for the CFL: ¢ = Ngjjces - 1

Upon increasing Ly, see Ngjices = 4, 5, 6, 8!



Detailed characterization using electron density-
density structure factor

On general symmetry grounds, electron density operator obtains
contributions from CF bilinear (gauge-neutral) combinations:

pel(q = ki — kj) ~ i (ki)bor (k;)

L, = 13 Ig: find 4 slices through the CF Fermi sea
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Detailed characterization using electron density-
density structure factor

pel(q = k; — kj) ~ ng(kiWCF(kj)

L, = 16 Ig: find 5 slices through the CF Fermi sea

See all wavevectors
expected from the
bilinears!
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Wide cylinders approaching 2d

. . . y 4 \
L, = 24 lg: find 8 slices through the CF Fermi sea :
Electron density-density structure factor: —r~
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Dominant feature --- “2kg circle” --- D(ay, ay) already looks 2d-like
accumulation surface for low- (the closest approach to 2d for

energy CF particle-hole excitations any non-FL state to date)



Particle-hole symmetry in the LLL

* LLL spanned by orbitals ¢;(r); electron C(’l’) — Z ¢j("’)0j
J

Anti-unitary operation (“particle-hole transformation”):

c(r) = c'(r), i— —i; — c; — c;r- (in any orbital basis)

--- can be symmetry at v=1/2 and is symmetry for any two-body
interactions projected to LLL (most of ED studies of FQH!)

* HLR construction operates in the full electron Hilbert space and not
just in the LLL and has no way to incorporate PH

* Trial wave functions motivated by the HLR theory are not PH-
symmetric. For a long time, the small PH-breaking was not considered
a serious issue with the HLR

* ED for small numbers of electrons in the putative HLR phase found
PH-symmetric ground state (Rezayi and Haldane)

* Recent proposal that perhaps CFL breaks PH spontaneously, similarly
to Moore-Read Pfaffian (Barkeshli, Mulligan, & Fisher)



Son's proposal of PH-symmetric “Dirac CFL”

* Fermi surface of “composite fermions” which are not the same as the
HLR CFs but have an underlying gapless Dirac character

* New CFs are coupled to a dynamical gauge field (similar to the HLR),
but with no Chern-Simons term (different from the HLR)

* CFs do not carry electric charge; instead, the electric charge currents
are encoded as fluxes of the gauge field:

jl_vxa < FS of CFs
o] =
4

* PH acts as familiar time reversal on the Dirac CFs

. “doped” QED3
\IfCF — ZO‘y\IfCF

(e.g., familiar from action of physical time reversal on a single Dirac
fermion on the surface of a 3d topological insulator)

Ji PH: fk — ew"“ f_k
Af,;rf_k + H.c. - odd under PH!




DMRG study of PH in the half-filled LLL

* Checked absence of PH-breaking by studying appropriate “order
parameters”

* Checked absence of PH-breaking by calculating overlap between the
ground state and its PH-conjugate:

Considered a potential interpolating between the Coulomb interactions
projected into the Oth and 1* Landau levels: V = (1-x) Vy + x V;
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DMRG test of the Son's theory: absence of
backscattering from PH-symmetric impurities

Familiar property of the single Dirac cone on the surface of 3d Tl: absence
of back-scattering from non-magnetic (i.e. T-preserving) impurities

Analogous property in Son's theory: absence of backscattering from PH-

preserving impurities.

Static (equal-time) analog: Correlation functions of PH-symmetric
operators do not have 2kg signatures corresponding to precise back-

scattering:
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DMRG test of the Son's theory: recovery of
backscattering upon removing PH-symmetry

Remove PH-symmetry by coupling to another 2DEG layer:

PH-even correlator at ¢, = ?
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Momentum ¢,

2k_signal is recovered!



Entanglement Entropy in the CFL

DMRG study used ¢ = Ngjies - 1, I.€., essentially counting number of slices
through the Fermi sea. Such counting is a key step behind Widom's
formula for the multiplicative-log violation in EE for free fermions; in 2d:

Llog(L
24m boundary J Fermi surface

Senthil & Swingle proposed that EE for non-FLs is given by the same
formula. However, recent numerical study by Shao, Kim, Haldane, &
Rezayi found significantly larger EE in a trial wave function for the CFL:
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EE in the CFL - N4 =144 study on 24x24

VMC study (Ryan Mishmash & OIM, PRB 2016):
Lattice version of the CFL wavefunction (electrons on a triangular lattice

at density 1/4, in a magnetic field corresponding to v=1/2)

total: 24 x 24, N = 144

|6 e S - Naively, we see roughly
- ofermionic HLR go 3 similar increase in the
1 4F 2bosonic HLR g ] prefactor for the electron
- o free fermions B Aﬁ"ﬂlf HLR compared to free-
____3: 1.2F | ferms (and a smaller
~ increase in EE for the
S 1p boson HLR).
20 .8 However, examination of
; contributing pieces
0.6 suggests strong crossover

at these length scales and
that ultimately there is no
such increase.




Pieces of the EE: “

mod” and “sign”

Natural decomposition in VMC for the Renyi entropy (Zhang, Grover,

Vishwanath):
A

S2,total — SZ,mod =+ SZ,sign

Renyi entropy for |¥|

mod: 24 x 24 N = 144
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We believe the curves saturate
-no log-violation of the area law for |¥]
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S, sign behaves very similarly for

the CFL states and free fermions;
all log-violation comes from here!



Future directions

* Experimental signatures of Dirac CFs? Recent proposal by Potter,
Serbyn, and Vishwanath to use Nernst measurements. Other probes?

* Construction of PH-symmetric trial CFL wavefunctions?

* Search for bosonic HLR at v=1 in bosonic FQH problems - not found so
far

* Bosonic HLR with PH-symmetry - not natural in FQH contexts (no PH
even when projected into the LLL), but can be realized/interesting as a
surface state of 3d bosonic TIs (Senthil & Wang; Xu & You; Mross, Alicea & OIM)

* Detailed study of non-FL properties of the CFLs (2kg singularity in 2d)

* Application of infinite-cylinder DMRG to other non-Fermi-liquid
problems (gapless spin liquids, Bose-metals, non-FL electronic metals)

* Application of fermionic dualities to other non-FLs

THANK YOU!



Relation among non-FL states;
“Slicing through the Fermi surface” DMRG studies

Beyond mean field - all these examples (including also CFL) lead to
parton-gauge-type theories with Fermi surfaces of partons coupled to a
dynamical gauge field. Partons are very strongly scattered by the gauge
field fluctuations and are not true “quasiparticles” - non-FL aspect (the CS
term in the CFL case is not so important for the non-FL aspects)

Status of such field theories in 2d is still not fully resolved - do they give
stable phases? (5.S.Lee, M.Metlitski, S.Sachdev, D.Mross, T.Senthil)

Unbiased numerical studies (D.N.Sheng, M.P.A.Fisher, M.Block, R.Mishmash,
R.Kaul, OIM): Idea of using DMRG to study N-leg ladders slicing through the
gapless surfaces. Successful with the Spinon Fermi sea and Bose-metal
states for up to 4-leg ladders (but really pushing it/close to being
iInconclusive), which are still very far from 2d, with many “quasi-1d”
details still in play.

Thanks to recent developments in DMRG for Fractional Quantum Hall
(FQH) problems (M.Zaletel, R.Mong, F.Poliman, S.Geraedts) -> Composite
Fermion Liquid can be reliably studied on effectively much wider systems
(so far up to 8 slices through the Fermi sea), which is much closer to 2d ---
Ideal setting for exploring such non-FL phases!
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