
Oscillatory Tunnel Splitting In Mn12
This expression for Δ looks nice, but…
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Numerical Integration reveals a linear dependence of SI on λ, 
in agreement with the even quench spacing.
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Single-Molecule Magnets:  An 
Overview

• Single-Molecule Magnets are Single-
Molecule Magnets.

• Each individual molecule is bistable (has its 
own hysteresis) due to anisotropy effects.

• Exchange coupling within a molecule is 
strong, and therefore usually ignorable at low 
temperatures → a rigid high-spin object.

• The molecules grow into crystals, yet interact 
with each other weakly.



Mn12 Acetate

Mn(IV)
S=3/2

Mn(III)
S=2

Total Spin 
= 10 = oxygen

= carbon

Mn12O12(CH3C02)16(H2O)4



Double-well Potential Model for 
Anisotropic Nanomagnet

m = -10
m = -9

m = 10

m = 9

Magnetic field tilts potential.  Energy levels correspond to 
different orientations of the magnet.
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Hysteresis loops for Mn12
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Friedman et al., PRL, 1996; Hernandez et al, EPL, 1996; Thomas et al., Nature, 1996; 
Hernandez et al., PRB, 1997.



Uniform spacing between 
steps
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Step spacing:  ~4.5 kOe
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Enhanced Relaxation at Step Fields

10-3

10-2

0 2000 4000 6000

9.5 kOe
9.0 kOe

(M
sa

t - 
M

)  
(e

m
u)

t (s)

Higher energy barrier

Yet faster relaxation!



Enhanced Relaxation at Step Fields
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Thermally Assisted Resonant 
Tunneling

m = -10
m = -9

m = 10

m = 9

Thermal 
activation

Fast tunneling

Tunneling occurs when levels in opposite wells align.



Spin Hamiltonian for Mn12

2
z BDS gμ= − − ⋅S HH

The field at which        (in the left well) crosses            (in the right 
well):

m m n− +

,m m n
B

DnH
gμ− +

−
=

Steps occur at regular intervals of field, as observed.

Step occurs every 4.5 kOe ⇒ D/g = 0.31 K

Compare with ESR data (e.g. Barra et al., PRB, 1997) :
D = 0.56 K, g = 1.93 D/g = 0.29 K



[Fe8O2(OH)12(tacn)6]Br8.9H20
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Fe8 Hamiltonian
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Low Temperature Millimeter Wave Probe

Waveguide

300 K 2K



Experimental Cavity and its Resonances

d = 50.8 mm
a = 1.65 mm
b = 0.82 mm

Fe8 CrystalHall Bar Detector



Equilibrium Magnetization of Fe8



Equilibrium Magnetization of Fe8 with and without 
High Power Radiation



m = 10
m = 9

Heating

m = 8

Radiation Induced Effects: Heating

Positive Feedback 

9-to-8
3.2 mW
2400

• Photon Absorbed
• Phonon Emitted
• Lattice Heats
• Spin System Heats
• Population of 9 increases



Pulsed Radiation Experiments
During the Pulse
• Photon absorbed.
• Phonon emitted.
• Lattice heats.
• Spin system heats.

After the Pulse
• Spin System Continues 
to heat in establishing 
equilibrium with the 
lattice.

1.8 K

TunnelingPhoton Induced

• M. Bal et al., Europhys. Lett 71, 110 (2005) and J. Appl. Phys., 99, 08D102 (2006).
• See also K. Petukhov et al., Cond-mat/0502175 (2005).



Measuring Fast and Small Magnetic Signals

• Hall bar detectors used in our previous studies are slow.
• Inductive Pick-up Loop coupled to SQUID voltmeter as a fast 

detector.

• High-Q Cylindrical cavity (Q ~ 6500)
200 μm

Top View

Au Foil
Fe8

Crystal
Pick-up Loop

Sample Holder



Phonon Bottleneck
• Resonant Phonons 

Repeatedly Emitted 
and Reabsorbed

• Increased Excited-
State Population

Radiation Induced Magnetization 
Changes at Short Time Scales

1.9 K
117.566 GHz
1800 Oe (10 to 9)

~5 μs
What is this decay?
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Magnetization Dynamics in “Real Time”
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Photon/Phonon Assisted Tunneling

• Tunneling begins during radiation pulse and continues after pulse is turned off.
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Simulations
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Phonon transition rates

Photon transition rates

Phonon number for i -> j
transition

10(g)

9(e)

(thermal, all but 10 (g) <-> 9 (e))

• Work in energy eigenbasis

(not spin eigenbasis)

• Tunneling included automatically

Phonon bottleneck number (for 10 (g) <-> 9 (e)): 

Absorption Emission Decay



Simulation Results
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Parameters: Anisotropy D = 0.290 K speed of sound cs = 670 m/s

Line width σ = 650 Oe [800 m/s in Evangelisti, et al., PRL 2005]

rf field H1 = 1.0 Oe inhomogeneous broadening:  200 Oe



Simulation Results
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Simulation Results
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Simulation Results
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observed in ESR: 
Park, et al., PRB 
(2002).



Conclusions
• Resonant radiation drives the spins and phonons 

out of thermal equilibrium – Heating.
• Phonon bottleneck in Fe8 with decay time ~5 μs.  
• Phonon bottleneck and thermally assisted 

tunneling from excited state induced by resonant 
radiation.

m = -
10

m = -9

m = 10
m = 9
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